首页> 外文期刊>The Journal of Physiology >Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization.
【24h】

Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization.

机译:海马神经元内在兴奋性的体内稳态:动力学和慢性去极化反应的机制。

获取原文
获取原文并翻译 | 示例
           

摘要

In order to maintain stable functionality in the face of continually changing input, neurones in the CNS must dynamically modulate their electrical characteristics. It has been hypothesized that in order to retain stable network function, neurones possess homeostatic mechanisms which integrate activity levels and alter network and cellular properties in such a way as to counter long-term perturbations. Here we describe a simple model system where we investigate the effects of sustained neuronal depolarization, lasting up to several days, by exposing cultures of primary hippocampal pyramidal neurones to elevated concentrations (10-30 mm) of KCl. Following exposure to KCl, neurones exhibit lower input resistances and resting potentials, and require more current to be injected to evoke action potentials. This results in a rightward shift in the frequency-input current (FI) curve which is explained by a simple linear model of the subthreshold I-V relationship. No changes are observed in action potential profiles, nor in the membrane potential at which action potentials are evoked. Furthermore, following depolarization, an increase in subthreshold potassium conductance is observed which is accounted for within a biophysical model of the subthreshold I-V characteristics of neuronal membranes. The FI curve shift was blocked by the presence of the L-type Ca(2+) channel blocker nifedipine, whilst antagonism of NMDA receptors did not interfere with the effect. Finally, changes in the intrinsic properties of neurones are reversible following removal of the depolarizing stimulus. We suggest that this experimental system provides a convenient model of homeostatic regulation of intrinsic excitability, and permits the study of temporal characteristics of homeostasis and its dependence on stimulus magnitude.
机译:为了面对不断变化的输入保持稳定的功能,CNS中的神经元必须动态调节其电特性。假设为了保持稳定的网络功能,神经元具有稳态机制,该机制整合了活动水平并以对抗长期扰动的方式改变了网络和细胞特性。在这里,我们描述了一个简单的模型系统,其中,通过将原代海马锥体神经元的培养物暴露于浓度较高的KCl(10-30 mm)中,我们研究了持续数天的持续神经元去极化的作用。接触氯化钾后,神经元表现出较低的输入电阻和静息电位,并且需要注入更多的电流才能引起动作电位。这导致频率输入电流(FI)曲线向右偏移,这可以通过亚阈值I-V关系的简单线性模型来解释。没有观察到动作电位曲线的变化,也没有观察到诱发动作电位的膜电位的变化。此外,在去极化之后,观察到亚阈值钾电导的增加,这在神经元膜的亚阈值IV特征的生物物理模型内得以解释。 FI曲线的移动被L型Ca(2+)通道阻滞剂硝苯地平的存在所阻止,而NMDA受体的拮抗作用并不影响其作用。最后,去除去极化刺激后,神经元内在特性的变化是可逆的。我们建议,该实验系统为内在兴奋性的稳态调节提供便利的模型,并允许研究稳态的时间特征及其对刺激幅度的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号