...
首页> 外文期刊>Biomechanics and modeling in mechanobiology >Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds
【24h】

Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds

机译:基于无纺布支架的工程心脏瓣膜组织中细胞外基质硬度的预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold–ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175–187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold–ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold–ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610–622, 2006), nonwoven scaffold–ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold–ECM composites is an increase in the number fiber–fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time course of tissue deposition, and is thus very suitable for studies of ECM formation in engineered heart valve tissues.
机译:具有适当的结构和机械特性的组织工程心脏瓣膜(TEHV)的体外开发仍然是一项重大挑战。要解决的重要步骤是建立支架与细胞外基质(ECM)机械性能之间的关系。在本研究中,建立了考虑无纺布支架-ECM耦合和跨壁胶原蛋白浓度分布的复合梁模型,并用于回顾性评估在静态和循环挠曲条件下孵育的TEHV标本中的ECM有效刚度(Engelmayr Jr等参见Biomaterials 26(2):175-187 2005)。 ECM有效硬度表示为局部胶原蛋白浓度与胶原蛋白特定硬度(即硬度/浓度)的乘积,并通过经验确定的支架-ECM耦合参数和测得的透壁胶原蛋白浓度与整体TEHV有效硬度相关分布。支架-ECM耦合参数是通过对可变刚度的聚丙烯酰胺凝胶(即ECM类似物)和相关的支架-聚丙烯酰胺凝胶复合材料(即工程组织类似物)进行弯曲机械测试来确定的。透壁胶原蛋白浓度分布是从picirisirius红色染色的TEHV切片的荧光显微照片定量的。正如以前的非织造支架结构模型所建议的那样(Engelmayr Jr和Sacks in J Biomech Eng 128(4):610-622,2006),非织造支架-ECM复合材料没有遵循传统的混合物规则。本研究提供了进一步的证据,表明非织造支架-ECM复合材料的主要增强方式是增加纤维-纤维键的数量,同时增加弹簧状纤维段的有效刚度。使用当前模型对潜在ECM沉积场景进行的仿真表明,本方法对组织沉积的特定时间过程敏感,因此非常适合研究工程性心脏瓣膜组织中ECM的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号