...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Theoretical Study of Atomic Layer Deposition Reaction Mechanism and Kinetics for Aluminum Oxide Formation at Graphene Nanoribbon Open Edges
【24h】

Theoretical Study of Atomic Layer Deposition Reaction Mechanism and Kinetics for Aluminum Oxide Formation at Graphene Nanoribbon Open Edges

机译:石墨烯纳米带开口边缘的铝层形成原子层沉积反应机理和动力学的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The atomic layer deposition (ALD) reaction of Al2O3 at graphene nanoribbon open edges has been studied theoretically by ab initio density functional theory and transition state rate theory. The structures of reactants, adsorption complexes, products, and transition states of the model reactions were optimized at the B3LYP/6-311G(d,p) level of theory. The potential energy profiles have revealed the mechanisms of the chemical adsorption and the dissociation reactions. The potential barriers of the adsorption reactions for the zigzag edge (eq 1z) and armchair edge (eq 1a) are predicted to be 1.5 and 6.5 kcal/mol, respectively, while in the following steps the adsorption process is a barrierless reaction and the dissociation process undertakes the release of CH4 via a tight transition state. The reaction rates for all five solid-gas interface reaction steps have been calculated in the temperature range 300—1000 K and the pressure range 0.1 Torr—10 atm. The result shows that the adsorption rate of the zigzag edge with H2O is much faster than that of the armchair edge with H2O. Theoretical prediction for reaction temperature and pressure is in good agreement with the experimental conditions. This work outlines a way by ALD to selectively decorate and passivate the zigzag and armchair edges of graphene nanofibbons, which have significantly different electrical and magnetic properties.
机译:从头计算密度泛函理论和过渡态速率理论对Al 2 O 3在石墨烯纳米带开口边缘的原子层沉积(ALD)反应进行了理论研究。在B3LYP / 6-311G(d,p)的理论水平上优化了模型反应的反应物,吸附配合物,产物和过渡态的结构。势能图揭示了化学吸附和离解反应的机理。锯齿形边缘(eq 1z)和扶手椅边缘(eq 1a)的吸附反应势垒预计分别为1.5和6.5 kcal / mol,而在随后的步骤中,吸附过程为无障碍反应且解离过程通过紧密的过渡状态进行CH4的释放。已在300-1000 K的温度范围和0.1 Torr-10 atm的压力范围内计算了所有五个固-气界面反应步骤的反应速率。结果表明,锯齿形边缘对H2O的吸附速率比扶手椅形边缘对H2O的吸附速率快得多。反应温度和压力的理论预测与实验条件吻合良好。这项工作概述了通过ALD选择性修饰和钝化石墨烯纳米纤维的之字形和扶手椅状边缘的方法,石墨烯纳米纤维具有明显不同的电和磁性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号