首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Orientation-Resolved Chemical Kinetics: Using Microfabrication to Unravel the Complicated Chemistry of KOH/Si Etching
【24h】

Orientation-Resolved Chemical Kinetics: Using Microfabrication to Unravel the Complicated Chemistry of KOH/Si Etching

机译:取向分解的化学动力学:使用微细加工解开KOH / Si蚀刻的复杂化学过程

获取原文
获取原文并翻译 | 示例
           

摘要

Microfabricated test patterns are used to measure the orientation-dependent rates of KOH/silicon etching of 180 surfaces in the Si[110] zone. The concentration and temperature dependence of the reaction is quantified, and a pronounced kinetic isotope effect is observed for all orientations. Although the kinetics of the KOH etching of silicon are complicated, the magnitude of the kinetic isotope effect, the morphology of the macrosteps on vicinal Si(111) surfaces, the pronounced hydrophobicity and H-termination of the etched surfaces are all consistent with a chemical mechanism that is rate-limited by cleavage of a Si-H bond by OH~-. There is no evidence of a gross change in chemical mechanism with surface orientation. Silicon surfaces in the [110] zone can be divided into four regions of similar reactivity: vicinal Si(100), vicinal Si(110), and two types of vicinal Si(111) surfaces. Within each region, all surfaces display remarkably similar chemical kinetics. These regions are separated by morphological transitions of unknown origin. The orientations of the morphological transitions are temperature dependent, which implies that they are not associated with surface structural transitions, such as reconstructions. The etch rate of vicinal Si(111) surfaces is well fit by a simple step flow model; however, etching-induced step bunching is also observed. The observed kinetics are inconsistent with existing theoretical models of step bunching. Low miscut vicinal Si(110) surfaces have very isotropic etch rates. which are attributed to etching induced faceting. The macroscopic etch rate displays markedly non-Arrhenius behavior (the etch anisotropy actually increases with temperature!), and the concentration dependence cannot be fit by a simple empirical rate law. These phenomena are attributed to the multisite nature of the etching reaction.
机译:微型测试图案用于测量Si [110]区域中180个表面的KOH /硅蚀刻的取向相关速率。定量反应的浓度和温度依赖性,并且在所有方向上观察到明显的动力学同位素效应。尽管硅的KOH蚀刻的动力学很复杂,但动力学同位素效应的大小,邻近Si(111)表面宏观台阶的形态,蚀刻表面的明显疏水性和H端接均与化学物质一致其机理是通过OH〜-裂解Si-H键来限制速率。没有证据表明表面取向的化学机理发生了重大变化。 [110]区域中的硅表面可以分为四个具有相似反应性的区域:相邻的Si(100),相邻的Si(110)和两种类型的相邻的Si(111)表面。在每个区域内,所有表面都显示出非常相似的化学动力学。这些区域被未知来源的形态转变所分隔。形态转变的方向与温度有关,这意味着它们与表面结构转变(例如重建)不相关。通过简单的分步流模型可以很好地拟合相邻的Si(111)表面的蚀刻速率。然而,也观察到蚀刻引起的台阶聚束。观察到的动力学与现有的步骤聚束理论模型不一致。低误切的邻近Si(110)表面具有非常各向同性的蚀刻速率。这归因于蚀刻引起的刻面。宏观蚀刻速率显示出明显的非阿累尼乌斯行为(蚀刻各向异性实际上会随温度而增加!),并且浓度依赖性无法通过简单的经验速率定律来拟合。这些现象归因于蚀刻反应的多部位性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号