...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Synthesis and Excited-State Photodynamics in Perylene-Porphyrin Dyads 2. Effects of Porphyrin Metalation State on the Energy-Transfer, Charge-Transfer, and Deactivation Channels
【24h】

Synthesis and Excited-State Photodynamics in Perylene-Porphyrin Dyads 2. Effects of Porphyrin Metalation State on the Energy-Transfer, Charge-Transfer, and Deactivation Channels

机译:Per-卟啉二元化合物的合成和激发态光动力学2.卟啉金属化态对能量转移,电荷转移和失活通道的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The photophysical properties of two perylene-porphyrin dyads have been examined in detail with the aim of expanding the functional utility of these constructs for molecular optoelectronics applications. The dyads consist of a perylene-bis(imide) dye (PDI) connected to either a magnesium porphyrin (Mg) or a free base porphyrin (Fb) via a diphenylethyne (pep) linker. The photophysical behavior of these two dyads show both similarities and differences to one another and to the dyad containing a zinc porphyrin (Zn) that was examined in the previous paper in this series. In the case of both PDI-pep-Fb and PDI-pep-Mg in toluene, the excited perylene unit (PDI) decays rapidly (Fb = 2.9 ps; Mg = 2.5 ps) by energy transfer to the porphyrin forming PDI-pep-Por in relatively high yield (Fb approx 85%; Mg approx 50%) and hole transfer to the porphyrin forming PDI~--pep-Por~+(Fb approx 15%; Mg approx 50%). This behavior parallels that observed for PDI-pep-Zn, for which rapid (2.5 ps) decay of PDI affords PDI-pep-Zn and PDI~--pep-Por~+ with yields of 80% and 20%, respectively. The subsequent behavior of the Fb-containing dyad is distinctly different in two ways from that of the Zn or Mg porphyrin-containing dyads. (1) Charge recombination within PDI~--pep-Fb~+ primarily forms PDI-pep-Fb, thereby complementing the formation of the latter species from PDI-pep-Fb. (2) PDI-pep-Fb subsequently decays to the ground state via fluorescence emission with a rate and yield that are nearly identical to those of an isolated Fb porphyrin. In contrast, for both PDI-pep-Mg and PDI-pep-Zn, the predominnt decay process for PDI-pep-Por is electron-transfer yielding PDI-pep-Por~+ (Zn approx 80%; Mg >99%). The rapid electron-transfer quenching of PDI-pep-Por and the nonemissive character of PDI~--pep-Por~+ leads to negligible fluroescence from the two metalloporphyrin-containing dyads after photoexcitation. The PDI-pep-Fb charge-separated product with Por = Mg or Zn is very long-lived (>10 ns) in toluene but decays much more rapidly (<0.5 ns) in acetonitrile. The differences in the rates of the various charge-transfer and charge-recombination processes of all of the dyads are consistent with a rate versus free-energy-gap profile (based on the relative redox potentials of the prophyrin constituents) that is in qualitative accord with electron-transfer theory. Collectively, the studies reported in this and the previous paper indicate that PDI-pep-Fb has the greatest potential utility in photonics applications wherein light harvesting by an accessory pigment, energy transport to an output chromophore, and emission (or energy transfer to another chromophore) are desired. On the other hand, PDI-pep-Mg (like PDI-pep-Zn) would be most useful as an all-optical gating element in which excited-state energy in an appended chromophore chain can be quenched by the charge-separated state of the perylene-porphyrin dyad, thereby shunting the light output or flow of energy.
机译:为了扩大这些构建体在分子光电应用中的功能用途,已经详细研究了两种per-卟啉二联体的光物理性质。二元组由通过二苯基乙炔(pep)连接基连接至镁卟啉(Mg)或游离碱卟啉(Fb)的per-双(酰亚胺)染料(PDI)组成。这两个二元组的光物理行为彼此之间以及与包含锌卟啉(Zn)的二元组都具有相似性和差异性,本系列先前的论文对此进行了检验。对于甲苯中的PDI-pep-Fb和PDI-pep-Mg而言,激发的per单元(PDI)通过能量转移到形成PDI-pep-的卟啉中而迅速衰减(Fb = 2.9 ps; Mg = 2.5 ps)。硼的产率较高(Fb约为85%; Mg约为50%),并且空穴转移到卟啉中形成PDI〜-pep-Por〜+(Fb约为15%; Mg约为50%)。这种行为与对PDI-pep-Zn观察到的情况相似,对于PDI-pep-Zn,PDI的快速衰减(2.5 ps)提供了PDI-pep-Zn和PDI-pep-Por- +,产率分别为80%和20%。含Fb的二元组的后续行为与含Zn或Mg的卟啉的二元组的后续行为明显不同。 (1)PDI --- pep-Fb- +中的电荷重组主要形成PDI-pep-Fb,从而补充了后者由PDI-pep-Fb的形成。 (2)PDI-pep-Fb随后通过荧光发射衰减至基态,其速率和产率与分离的Fb卟啉的速率和产率几乎相同。相比之下,对于PDI-pep-Mg和PDI-pep-Zn,PDI-pep-Por的主要衰变过程是电子转移,产生PDI-pep-Por〜+(锌约80%; Mg> 99%) 。 PDI-pep-Por的快速电子转移猝灭和PDI --- pep-Por- +的非发光特性导致光激发后来自两个含金属卟啉的二元组的荧光可忽略不计。 Por = Mg或Zn的PDI-pep-Fb电荷分离产物在甲苯中的寿命很长(> 10 ns),而在乙腈中的降解更快(<0.5 ns)。所有二重体的各种电荷转移和电荷复合过程的速率差异与定性一致的速率与自由能隙曲线(基于卟啉成分的相对氧化还原电位)一致电子转移理论总体而言,本论文和先前论文中报道的研究表明,PDI-pep-Fb在光子学应用中具有最大的潜在效用,其中通过辅助颜料进行光收集,将能量传输到输出生色团以及将发射(或能量转移到另一生色团) )。另一方面,PDI-pep-Mg(如PDI-pep-Zn)作为全光学选通元件将是最有用的,其中附加的生色团链中的激发态能量可以通过C的电荷分离态猝灭。 ylene-卟啉二聚体,从而使光输出或能量流分流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号