首页> 外文期刊>The Annals of Statistics: An Official Journal of the Institute of Mathematical Statistics >GAUSSIAN GRAPHICAL MODEL ESTIMATION WITH FALSE DISCOVERY RATE CONTROL
【24h】

GAUSSIAN GRAPHICAL MODEL ESTIMATION WITH FALSE DISCOVERY RATE CONTROL

机译:伪发现率控制的高斯图形模型估计

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the estimation of a high-dimensional Gaussian graphical model (GGM). Typically, the existing methods depend on regularization techniques. As a result, it is necessary to choose the regularized parameter. However, the precise relationship between the regularized parameter and the number of false edges in GGM estimation is unclear. In this paper we propose an alternative method by a multiple testing procedure. Based on our new test statistics for conditional dependence, we propose a simultaneous testing procedure for conditional dependence in GGM. Our method can control the false discovery rate (FDR) asymptotically. The numerical performance of the proposed method shows that our method works quite well.
机译:本文研究了高维高斯图形模型(GGM)的估计。通常,现有方法取决于正则化技术。结果,必须选择正则化参数。但是,尚不清楚GGM估计中正则化参数与错误边缘数量之间的精确关系。在本文中,我们提出了一种通过多重测试程序的替代方法。基于我们新的条件依赖测试统计数据,我们提出了GGM中条件依赖的同时测试程序。我们的方法可以渐进地控制错误发现率(FDR)。所提方法的数值性能表明,该方法效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号