...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V2O5 Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte
【24h】

High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V2O5 Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte

机译:使用V2O5纳米材料阴极和室温离子液体电解质的锂金属电池的高容量,安全性和增强的可循环性

获取原文
获取原文并翻译 | 示例

摘要

V2O5 nanomaterials including nanoribbons, nanowires, and microflakes have been synthesized by an ultrasonic assisted hydrothermal method and combined with a post-annealing process. The as-annealed V2O5 nanomaterials are characterized by X-ray diffraction (XRD), Brunauer—Emmett—Teller (BET) N2 adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). A room temperature ionic liquid (RTIL) has been used as an electrolyte ([C3mpyr][NTf2] containing 1 M LiNTf2) in rechargeable lithium metal batteries by combining V2O5 nanomaterials as cathode materials. The electrochemical tests including constant current charge—discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) show near theoretical specific capacity, improved cyclability, good high-rate capability, and enhanced kinetics. The thermogravimetric analysis (TGA) results show that the RTIL can prevent the dissolution of V2O5 during charge and discharge. The rechargeable lithium battery presented here using V2O5 nanoribbons as cathode materials and RTIL as electrolyte could be the next generation lithium battery with high capacity, safety, and long cycle life.
机译:通过超声辅助水热法合成了V2O5纳米材料,包括纳米带,纳米线和微米薄片,并结合了后退火工艺。退火后的V2O5纳米材料的特征在于X射线衍射(XRD),Brunauer-Emmett-Teller(BET)N2吸附,扫描电子显微镜(SEM),透射电子显微镜(TEM)和高分辨率透射电子显微镜(HRTEM) )。通过结合V2O5纳米材料作为阴极材料,室温离子液体(RTIL)已用作可再充电锂金属电池中的电解质([C3mpyr] [NTf2],含1 M LiNTf2)。包括恒流充放电,循环伏安法(CV)和电化学阻抗谱(EIS)在内的电化学测试显示出接近理论的比容量,改善的循环能力,良好的高倍率能力和增强的动力学性能。热重分析(TGA)结果表明,RTIL可以防止充电和放电过程中V2O5的溶解。本文介绍的以V2O5纳米带为正极材料,RTIL为电解质的可再充电锂电池可能是具有高容量,安全性和长寿命的下一代锂电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号