...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Series of Quinoidal Methyl-Dioxocyano-Pyridine Based pi-Extended Narrow-Bandgap Oligomers for Solution-Processed Small-Molecule Organic Solar Cells
【24h】

Series of Quinoidal Methyl-Dioxocyano-Pyridine Based pi-Extended Narrow-Bandgap Oligomers for Solution-Processed Small-Molecule Organic Solar Cells

机译:用于溶液处理的小分子有机太阳能电池的基于醌型甲基二氧杂氰基吡啶的π扩展窄带隙低聚物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Small molecules with narrow bandgap of <1.6 eV can harvest the visible and near-infrared solar photons. In this Article, we report a new method to achieve narrow bandgap small molecule donors by using electron-deficient quinoidal methyl-dioxocyano-pyridine (MDP) to induce possible quinoidal resonance structure along the conjugated A-pi-D-pi-A backbone. Practically, two MDP moieties are covalently linked onto an electron-rich benzodithiophene (BDT) through the oligothiophene (OT-5T) pi-bridge. The affording small molecules, namely, nTBM, exhibit broad and strong absorption bands covering the visible and near-infrared region from 400 to 870 nm. The estimated optical bandgap is down to 1.4 eV. The narrow bandgap is associated with the low-lying lowest unoccupied molecular orbital (LUMO) energy level (about -3.7 eV) and the high-lying highest occupied molecular orbital (HOMO) energy level (around -5.1 eV). Density-functional theory calculations reveal that the HOMO and LUMO energy levels, with the increase of the size of the oligothiophene bridge, become localizations in different moieties, i.e., the central electron-donating and the terminal electron-withdrawing units, respectively, which provides necessary driving force for the delocalization of the excited electrons and formation of the quinoidal resonance structure. The quinoidal structure enhances the photoinduced intramolecular charge-transfer, leading to the absorbance enhancement of the low-energy absorption band. With the increase of the size of the oligothiophene from 0 to 5 thienyl units and the change of the direction of the alkyl chains on the bridged thiophene from "outward" to "inward", the crystalline nature, fibril length, and phase size of the blend films as well as the cell performance are all fine-tuned, also. With the "inward" alkyl chains, the terthiophene bridged molecule is amorphous, while the pentathiophene bridged one is relatively crystalline. Both molecules form nanoscale interpenetrating networks with a phase size of 15-20 nm when blended with PC71BM, showing the higher hole mobility and promising electric performance.
机译:带隙小于1.6 eV的小分子可以收集可见光和近红外光子。在本文中,我们报告了一种新的方法,该方法通过使用缺电子的醌型甲基二氧杂氰基吡啶(MDP)沿共轭A-pi-D-pi-A主链诱导可能的醌型共振结构来实现窄带隙小分子供体。实际上,两个MDP部分通过寡噻吩(OT-5T)pi桥共价连接到一个富电子的苯并二噻吩(BDT)上。提供的小分子,即nTBM,显示出宽而强的吸收带,覆盖了从400至870 nm的可见和近红外区域。估计的光学带隙降至1.4 eV。窄带隙与低位最低的未占据分子轨道(LUMO)能级(约-3.7 eV)和高位最高的未占据分子轨道(HOMO)能级(-5.1 eV附近)相关。密度泛函理论计算表明,随着低聚噻吩桥尺寸的增加,HOMO和LUMO的能级分别成为不同部分的局部化,即中心给电子单元和末端吸电子单元,激发电子的离域和形成喹啉共振结构所必需的驱动力。醌型结构增强了光诱导的分子内电荷转移,导致低能吸收带的吸收增强。随着低聚噻吩的尺寸从0到5噻吩单元的增加以及桥联噻吩上烷基链的方向从“向外”到“向内”的变化,其结晶性质,原纤维长度和相尺寸混合膜以及电池性能也都进行了微调。通过“向内”烷基链,对噻吩桥连的分子是无定形的,而对五噻吩桥连的分子是相对结晶的。当与PC71BM混合时,两个分子均形成具有15-20 nm相尺寸的纳米级互穿网络,显示出更高的空穴迁移率和有希望的电性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号