首页> 外文期刊>The Journal of Chemical Physics >TRAPPING-MEDIATED AND DIRECT DISSOCIATIVE CHEMISORPTION OF METHANE ON IR(110) - A COMPARISON OF MOLECULAR BEAM AND BULB EXPERIMENTS
【24h】

TRAPPING-MEDIATED AND DIRECT DISSOCIATIVE CHEMISORPTION OF METHANE ON IR(110) - A COMPARISON OF MOLECULAR BEAM AND BULB EXPERIMENTS

机译:甲烷在IR(110)上的介导的甲烷的直接解离化学吸附-分子束和球团实验的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular-beam and bulb gas techniques were employed to study dissociative chemisorption and physical adsorption of methane on Ir(110). The initial dissociative chemisorption probability (So) was measured as a function of incident kinetic energy (E-i), surface temperature, and angle of incidence. With this investigation, we provide the first unambiguous evidence of a trapping-mediated pathway for methane dissociation on any surface. This interpretation is supported by excellent quantitative agreement between our data at low kinetic energies and a simple kinetic model of the trapping-mediated mechanism. Additionally, this is the first molecular-beam study of any gas on any surface that is consistent with a simple trapping-mediated model in which the barrier to dissociation from the physically adsorbed state is greater than the barrier to desorption. At high-incident kinetic energies, the value of So increases with Ei indicative of a direct mechanism. The values of the reaction probability determined from the molecular-beam experiments are integrated over a Maxwell-Boltzmann energy distribution to predict the initial chemisorption probability of thermalized methane as a function. of gas and surface temperature. These calculations are in excellent agreement with the results obtained from bulb experiments conducted with room-temperature methane gas over Ir(110) and indicate that a trapping-mediated pathway governs dissociation at low gas temperatures. At the high gas temperatures characteristic of catalytic conditions, however, a direct mechanism dominates reactive adsorption of methane over Ir(110). (C) 1997 American Institute of Physics. [References: 61]
机译:采用分子束和球气技术研究了Ir(110)上甲烷的解离化学吸附和物理吸附。测量初始解离化学吸附概率(So)作为入射动能(E-i),表面温度和入射角的函数。通过这项调查,我们提供了任何表面上甲烷解离的诱捕介导途径的第一个明确证据。这种解释得到了我们在低动能条件下的数据与捕集介导机制的简单动力学模型之间出色的定量一致性的支持。此外,这是对任何表面上任何气体的首次分子束研究,与简单的捕集介导的模型一致,在该模型中,从物理吸附状态解离的障碍大于对解吸的障碍。在高入射动能下,So的值随Ei的增加而增加,这表明存在直接机理。由分子束实验确定的反应概率值在Maxwell-Boltzmann能量分布上进行积分,以预测热化甲烷的初始化学吸附概率作为函数。气体和表面温度。这些计算结果与在Ir(110)上用室温甲烷气体进行的灯泡实验获得的结果非常吻合,表明在低气体温度下,捕获介导的途径决定了离解。然而,在催化条件下的高气体温度下,直接机理主导了Ir(110)上甲烷的反应性吸附。 (C)1997美国物理研究所。 [参考:61]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号