...
首页> 外文期刊>The Journal of Chemical Physics >DISSOCIATIVE CHEMISORPTION OF METHANE ON IR(111) - EVIDENCE FOR DIRECT AND TRAPPING-MEDIATED MECHANISMS
【24h】

DISSOCIATIVE CHEMISORPTION OF METHANE ON IR(111) - EVIDENCE FOR DIRECT AND TRAPPING-MEDIATED MECHANISMS

机译:甲烷在IR(111)上的解离化学吸附-直接和捕获介导机理的证据

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular beam and bulb gas techniques were employed to study dissociative chemisorption of methane on Ir(111). The initial dissociative chemisorption probability (S-0) was measured as a function of incident kinetic energy (E-i), surface temperature, and angle of incidence (theta(i)). As the incident kinetic energy increases, the value of S-0 first decreases and then increases with E-i indicating that a trapping-mediated chemisorption mechanism dominates methane dissociation at low kinetic energy, and a direct mechanism dominates at higher kinetic energies. The values of the reaction probability determined from molecular beam experiments of methane on Ir(111) are modeled as a function of E-i, theta(i), and surface temperature. These fits are then integrated over a Maxwell-Boltzmann energy distribution to calculate the initial chemisorption probability of thermalized methane as a function of gas and surface temperature. The calculations are in excellent agreement with results obtained from bulb experiments conducted with room-temperature methane gas over Ir(111) and indicate that a trapping-mediated pathway governs dissociation at low gas temperatures. At the high gas temperatures characteristic of catalytic conditions, however, these calculations indicate that a direct mechanism dominates methane dissociation over Ir(111). These dynamical results are qualitatively similar to the results of a previous study of methane dissociation on Ir(110), although the reactivity of thermalized methane is approximately an order of magnitude higher on the (110) surface of iridium. (C) 1997 American Institute of Physics. [S0021-9606(97)01047-7]. [References: 50]
机译:分子束和灯泡气体技术被用来研究甲烷在Ir(111)上的解离化学吸附。测量初始解离化学吸附概率(S-0)作为入射动能(E-i),表面温度和入射角(θ(i))的函数。随着入射动能的增加,S-0的值首先减小,然后随着E-i的增加而增加,这表明陷阱介导的化学吸附机制在低动能下主导甲烷的离解,而直接机制在较高的动能下主导。根据甲烷在Ir(111)上的分子束实验确定的反应概率值被建模为E-i,theta(i)和表面温度的函数。然后,将这些拟合值整合到Maxwell-Boltzmann能量分布上,以计算作为气体和表面温度的函数的热甲烷的初始化学吸附率。该计算与在Ir(111)上用室温甲烷气体进行的灯泡实验获得的结果非常吻合,表明在低气体温度下,捕获介导的途径决定了离解。然而,在催化条件下的高气体温度下,这些计算表明,直接机理主导了Ir(111)上的甲烷离解。这些动力学结果在质量上与先前在Ir(110)上进行甲烷离解研究的结果相似,尽管热化甲烷在铱(110)表面的反应性大约高一个数量级。 (C)1997美国物理研究所。 [S0021-9606(97)01047-7]。 [参考:50]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号