首页> 外文期刊>The FEBS journal >Structure of NADP+-dependent glutamate dehydrogenasefrom Escherichia coli – reflections on the basis ofcoenzyme specificity in the family of glutamatedehydrogenases
【24h】

Structure of NADP+-dependent glutamate dehydrogenasefrom Escherichia coli – reflections on the basis ofcoenzyme specificity in the family of glutamatedehydrogenases

机译:大肠杆菌NADP +依赖性谷氨酸脱氢酶的结构-基于谷氨酸脱氢酶家族辅酶特异性的思考

获取原文
获取原文并翻译 | 示例
           

摘要

Glutamate dehydrogenases (GDHs; EC 1.4.1.2–4) catalyse the oxidativedeamination of L-glutamate to a-ketoglutarate, using NAD+ and/orNADP+ as a cofactor. Subunits of homo-hexameric bacterial enzymes comprisea substrate-binding domain I followed by a nucleotide-bindingdomain II. The reaction occurs in a catalytic cleft between the two domains.Although conserved residues in the nucleotide-binding domains of variousdehydrogenases have been linked to cofactor preferences, the structural basisfor specificity in the GDH family remains poorly understood. Here, therefined crystal structure of Escherichia coli GDH in the absence of reactantsis described at 2.5-A resolution. Modelling of NADP+ in domain II revealsthe potential contribution of positively charged residues from a neighbouringa-helical hairpin to phosphate recognition. In addition, a serine that followsthe P7 aspartate is presumed to form a hydrogen bond with the 2′-phosphate.Mutagenesis and kinetic analysis confirms the importance of these residuesin NADP+ recognition. Surprisingly, one of the positively charged residuesis conserved in all sequences of NAD+-dependent enzymes, but the conformationsadopted by the corresponding regions in proteins whose structurehas been solved preclude their contribution to the coordination of the2′-ribose phosphate of NADP+. These studies clarify the sequence–structurerelationships in bacterial GDHs, revealing that identical residues may specifydifferent coenzyme preferences, depending on the structural context. Primarysequence alone is therefore not a reliable guide for predicting coenzyme specificity. We also consider how it is possible for a single sequence to accommodateboth coenzymes in the dual-specificity GDHs of animals.
机译:谷氨酸脱氢酶(GDHs; EC 1.4.1.2–4)使用NAD +和/或NADP +作为辅因子,催化L-谷氨酸氧化脱氨为α-酮戊二酸。同六聚体细菌酶的亚基包含底物结合结构域I,然后是核苷酸结合结构域II。该反应发生在两个结构域之间的催化裂隙中。尽管各种脱氢酶核苷酸结合结构域中的保守残基已与辅因子偏爱相关联,但对GDH家族特异性的结构基础仍知之甚少。在此,以2.5-A的分辨率确定了在没有反应的情况下大肠杆菌GDH的晶体结构。域II中的NADP +建模揭示了来自邻居螺旋发夹的带正电残基对磷酸盐识别的潜在贡献。另外,推测在P7天冬氨酸之后的丝氨酸与2'-磷酸形成氢键。诱变和动力学分析证实了这些残基在NADP +识别中的重要性。令人惊讶地,带正电荷的残基之一在NAD +依赖性酶的所有序列中都保守,但是结构已被解决的蛋白质中相应区域所采用的构象排除了它们对NADP +的2'-核糖磷酸的配位的贡献。这些研究阐明了细菌GDH中的序列-结构关系,揭示了相同的残基可能根据结构背景指定不同的辅酶偏好。因此,仅靠初级序列并不是预测辅酶特异性的可靠指南。我们还考虑了单个序列如何在动物的双特异性GDHs中同时包含两种辅酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号