首页> 外文期刊>The FEBS journal >Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein
【24h】

Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein

机译:与蛋白质的核小体间隔和DNA序列特异性结合相关的核小体定位

获取原文
获取原文并翻译 | 示例
           

摘要

Nucleosome positioning is an important mechanism for the regulation of eukaryotic gene expression. Folding of the chromatin fiber can influence nucleosome positioning, whereas similar electrostatic mechanisms govern the nucleosome repeat length and chromatin fiber folding in vitro. The position of the nucleosomes is directed either by the DNA sequence or by the boundaries created due to the binding of certain trans-acting factors to their target sites in the DNA. Increasing ionic strength results in an increase in nucleosome spacing on the chromatin assembled by the S-190 extract of Drosophila embryos. In this study, a mutant lac repressor protein R3 was used to find the mechanisms of nucleosome positioning on a plasmid with three R3-binding sites. With increasing ionic strength in the presence of R3, the number of positioned nucleosomes in the chromatin decreased, whereas the internucleosomal spacings of the positioned nucleosomes in a single register did not change. The number of the positioned nucleosomes in the chromatin assembled in vitro over different plasmid DNAs with 1-3 lac operators changed with the relative position and number of the R3-binding sites. We found that in the presence of R3, nucleosomes were positioned in the salt gradient method of the chromatin assembly, even in the absence of a nucleosome-positioning sequence. Our results show that nucleosome-positioning mechanisms are dominant, as the nucleosomes can be positioned even in the absence of regular spacing mechanisms. The protein-generated boundaries are more effective when more than one binding site is present with a minimum distance of similar to 165 bp, greater than the nucleosome core DNA length, between them.
机译:核小体定位是调节真核基因表达的重要机制。染色质纤维的折叠会影响核小体的定位,而体外类似的静电机制控制核小体的重复长度和染色质纤维的折叠。核小体的位置由DNA序列或由某些反式作用因子与其在DNA中的靶位点结合所产生的边界所指导。离子强度的增加导致果蝇胚胎S-190提取物组装的染色质上核小体间距的增加。在这项研究中,突变型lac阻遏蛋白R3被用于寻找核小体定位在具有三个R3结合位点的质粒上的机制。在R3存在下,随着离子强度的增加,染色质中定位核小体的数量减少,而单个寄存器中定位核小体的核小体间间距不变。在具有1-3个lac操纵子的不同质粒DNA上体外组装的染色质中定位的核小体的数目随R3结合位点的相对位置和数目而改变。我们发现,在存在R3的情况下,即使在没有核小体定位序列的情况下,核小体也可以在染色质装配体的盐梯度法中定位。我们的结果表明,核小体的定位机制占主导地位,因为即使没有规则的间隔机制也可以定位核小体。当存在多个结合位点且它们之间的最小距离大于165 bp的最小距离(大于核小体核心DNA长度)时,蛋白质生成的边界会更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号