首页> 外文期刊>The European physical journal, E. Soft matter >Buckling of spherical shells adhering onto a rigid substrate
【24h】

Buckling of spherical shells adhering onto a rigid substrate

机译:球壳的屈曲,粘附在刚性基材上

获取原文
获取原文并翻译 | 示例
           

摘要

Deformation of a spherical shell adhering onto a rigid substrate due to van der Waals attractive interaction is investigated by means of numerical minimization (conjugate gradient method) of the sum of the elastic and adhesion energies. The conformation of the deformed shell is governed by two dimensionless parameters, i.e., C-s/epsilon and C-b/epsilon where C-s and C-b are respectively the stretching and the bending constants, and epsilon is the depth of the van der Waals potential between the shell and substrate. Four different regimes of deformation are characterized as these parameters are systematically varied: (i) small deformation regime, (ii) disk formation regime, (iii) isotropic buckling regime, and (iv) anisotropic buckling regime. By measuring the various quantities of the deformed shells, we find that both discontinuous and continuous bucking transitions occur for large and small C-s/epsilon, respectively. This behavior of the buckling transition is analogous to van der Waals liquids or gels, and we have numerically determined the associated critical point. Scaling arguments are employed to explain the adhesion induced buckling transition, i.e., from the disk formation regime to the isotropic buckling regime. We show that the buckling transition takes place when the indentation length exceeds the effective shell thickness which is determined from the elastic constants. This prediction is in good agreement with our numerical results. Moreover, the ratio between the indentation length and its thickness at the transition point provides a constant number (2-3) independent of the shell size. This universal number is observed in various experimental systems ranging from nanoscale to macroscale. In particular, our results agree well with the recent compression experiment using microcapsules.
机译:由于范德华力的吸引作用,使粘附在刚性基材上的球形壳变形,是通过弹性能和粘附能之和的数值最小化(共轭梯度法)研究的。变形壳的构象由两个无因次参数控制,即Cs / epsilon和Cb / epsilon,其中Cs和Cb分别是拉伸常数和弯曲常数,ε是壳与壳之间范德华势的深度。基质。四个不同的变形方式的特征是这些参数的系统变化:(i)小变形方式,(ii)圆盘形成方式,(iii)各向同性屈曲方式,和(iv)各向异性屈曲方式。通过测量变形壳的各种数量,我们发现大和小C-s /ε分别发生了不连续和连续的屈曲转变。屈曲转变的这种行为类似于范德华液体或凝胶,我们已经通过数值确定了相关的临界点。使用比例论证来解释粘附引起的屈曲转变,即从盘形成状态到各向同性屈曲状态。我们表明,当压痕长度超过有效壳厚度(由弹性常数确定)时,会发生屈曲过渡。该预测与我们的数值结果非常吻合。而且,压痕长度与其在过渡点处的厚度之间的比率提供了恒定的数值(2-3),与壳体尺寸无关。在从纳米级到宏观级的各种实验系统中都观察到了这个通用数。特别地,我们的结果与最近使用微胶囊的压缩实验非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号