首页> 外文期刊>The European physical journal, D. Atomic, molecular, and optical physics >High energy radiation femtochemistry of water molecules: Early electron-radical pairs processes
【24h】

High energy radiation femtochemistry of water molecules: Early electron-radical pairs processes

机译:水分子的高能辐射飞化学:早期电子-自由基对过程

获取原文
获取原文并翻译 | 示例
           

摘要

The damages triggered by ionizing radiation on chemical and biological targets depend on the survival probability of radicals produced in clusters of ionization-excitation events. In this paper, we report on femtolysis (FEMTOsecond radioLYSIS) of pure liquid water using an innovative laser produced high-energy, ultra-short electron bunches in the 2.5-15 MeV range and high energy radiation femtochemistry (HERF) measurements. The short-time monitoring of a primary reducing radical, hydrated electron e_(aq)~-, has been performed in confined ionization spaces (nascent spurs). The calculated yield of hydrated electrons at early time, G(e_(aq)~-)ET, is estimated to be 6.5 ± 0.5 (number/100 eV) at t ~ 5 ps after the ultrafast energy deposition. This estimated value is high compare to (i) the available data of previous works that used scavenging techniques; (ii) the predictions of stochastic water radiolysis modelling for which the initial behaviour of hydrated electron is investigated in the framework of a classical diffusion regime of independent pairs. The HERF developments give new insights into the early ubiquitous radical escape probability in nascent aqueous spurs and emphasize the importance of short-lived solvent bridged electron-radical complexes [H_3O~+? ∈ e_(aq)~- OH]nH_2O (non-independent pairs). A complete understanding of the G(e_(aq)~-)ET value needs to account for quantum aspects of 1s-like trapped electron ground state and neoformed prototropic radicals that govern ultra-fast recombination processes within these non-independent pair configurations. Femtolysis data emphasize that within a time-dependent non-diffusion regime, spatio-temporal correlations between hydrated electron and nearest neighbours OH radical or hydrated proton (H_3O~+) would assist ultrafast anisotropic 1D recombination within solvent bridged electron-radical complexes. The emerging HERF domain would provide guidance for understanding of ultrashort-lived sub-structure of tracks and stimulate future semi-quantum simulations on prethermal radical reactions.
机译:化学和生物目标上的电离辐射引发的损害取决于电离激发事件簇中产生的自由基的存活概率。在本文中,我们报告了使用创新的激光在2.5-15 MeV范围内产生的高能,超短电子束和高能辐射飞化学(HERF)测量结果,对纯液态水进行了飞解(FEMTOsecond radioLYSIS)。主要的还原自由基,水合电子e_(aq)〜-的短时监测已在封闭的电离空间(新生杂散)中进行。在超快能量沉积后的t〜5 ps时,早期计算的水合电子的产率G(e_(aq)〜-)ET估计为6.5±0.5(数量/ 100 eV)。与(i)使用清除技术的先前作品的可用数据相比,该估计值很高; (ii)随机水辐射分解模型的预测,其中在独立对的经典扩散机制的框架内研究了水合电子的初始行为。 HERF的发展为新生水刺中早期普遍存在的自由基逃逸可能性提供了新见解,并强调了短寿命溶剂桥联的电子自由基复合物[H_3O〜+? ∈e_(aq)〜-OH] nH_2O(非独立对)。对G(e_(aq)〜-)ET值的完整理解需要考虑类1s俘获的电子基态和新形成的质子自由基的量子方面,它们在这些非独立对构型中控制超快速重组过程。 Femtolysis数据强调,在随时间变化的非扩散机制中,水合电子与最邻近的OH自由基或水合质子(H_3O〜+)之间的时空相关性将有助于溶剂桥联的电子-自由基配合物中的超快各向异性一维复合。新兴的HERF领域将为理解轨道的超短寿命子结构提供指导,并刺激未来对预热自由基反应的半量子模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号