首页> 外文期刊>Biochemistry and Cell Biology >An in silico approach to analyzing nuclear FRAP protein recovery curves using an extension of the Gillespie algorithm
【24h】

An in silico approach to analyzing nuclear FRAP protein recovery curves using an extension of the Gillespie algorithm

机译:一种计算机方法,使用Gillespie算法的扩展来分析核FRAP蛋白的回收曲线

获取原文
获取原文并翻译 | 示例
           

摘要

Proper recruitment of repair proteins to the foci of DNA double-stranded breaks represent one instance of a fundamental reaction diffusion process in which the geometry and topology within an environment are critically important. Here present a novel computational method to analyze protein diffusion. Our method is based on a previously published extension of the Gillespie algorithm that includes diffusion in 3-D volumes. In particular, our method helps analyze FRAP (fluorescence recovery after photo-bleaching) recovery curves. Simulations are run in idealized nuclei with different geometries (i.e., spheres and cubes). Each nucleus is subdivided into cubic elements (about 64 000 in total) used to model diffusion. The program has 2 adjustable parameters: the initial average concentration of proteins, and the diffusion coefficient. As an illustration, we simulated the bleaching of regions of varying dimensions. Protein molecules of negligible volume were uniformly distributed throughout the simulatednucleus. Proteins had 2 states: fluorescent and bleached. At time 0, only fluorescent molecules were present. At the time of exposure, proteins in the selected region changed states (from, fluorescent to bleached) and the recovery of fluorescence owing to diffusion in the bleached region was measured. Our results are in agreement with previous studies and show that varying the initial nuclear protein concentration, the diffusion coefficients, or the geometry of bleached regions changes the FRAP recovery curve. Our study represents an initial step towards better understanding the impact of geometric elements, e.g., chro-matin fibers, on proteins as they diffuse into the bleached regions. This research is partially supported by the SCORE National Institutes of Health program grant No. 2S06GM52588-12 and the San Francisco State University Center for Computing in the Life Sciences.
机译:适当地将修复蛋白募集到DNA双链断裂的位点代表了基本反应扩散过程的一种情况,其中环境中的几何形状和拓扑至关重要。在这里提出了一种新的计算方法来分析蛋白质的扩散。我们的方法基于以前发布的Gillespie算法扩展,其中包括在3-D体积中的扩散。特别地,我们的方法有助于分析FRAP(光漂白后的荧光恢复)恢复曲线。模拟是在具有不同几何形状(即球体和立方体)的理想化原子核中进行的。每个核都细分为用于模拟扩散的立方元素(总计约64 000)。该程序有2个可调参数:蛋白质的初始平均浓度和扩散系数。作为说明,我们模拟了不同尺寸区域的漂白。体积可忽略不计的蛋白质分子均匀分布在整个模拟核中。蛋白质有2种状态:发荧光和漂白。在时间0,仅存在荧光分子。在暴露时,选定区域中的蛋白质改变状态(从荧光变为漂白),并测量由于在漂白区域中扩散而导致的荧光恢复。我们的结果与以前的研究一致,表明改变初始核蛋白浓度,扩散系数或漂白区域的几何形状会改变FRAP回收曲线。我们的研究代表迈出了更好地理解几何元素(例如色度纤维)对蛋白质扩散到漂白区域时的影响的第一步。这项研究得到了SCORE国立卫生研究院计划资助2S06GM52588-12和旧金山州立大学生命科学计算中心的部分支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号