【24h】

Numerical modelling of magma transport in dykes

机译:堤防中岩浆运移的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

The rheology and dynamics of an ascending pure melt in a dyke have been extensively studied in the past. From field observations, it is apparent that most dykes actually contain a crystalline load. The presence of a crystalline load modifies the effective rheology of such a system and thus the flow behaviour. Indeed, the higher density and viscosity of each crystal, compared to the melt, cause a decrease of the ascent velocity and modify the shape of the velocity profile, from a typical Poiseuille flow, to a Bingham-type flow. A common feature observed in the field is the arrangement of crystals parallel or at a very low angle to the edge of the dyke. Such a structural arrangement is often interpreted as the result of magma flow, which caused the crystals to rotate and align within the flow direction, but this process remains unclear. Another issue related to the introduction of a crystalline load concerns the possibility for crystals to be segregated from a viscous granitic melt phase during magma ascent. The implications of such a process on magmatic differentiation have not previously been considered, nor has such a process been previously investigated via numerical models. In this study, we examine the flow dynamics of a crystal bearing granitic melt ascending in a dyke via numerical models. In our models, both the crystal and melt phases are represented as highly viscous fluids in a Stokes regime. Our results reveal that the presence of crystals in the melt modifies the magma velocity profile across the dyke. Furthermore, we observe that whilst crystals continually rotate in the shear flow, over one period of revolution, their major axis has a high probability to be aligned parallel to the flow direction. Moreover, some experiments showed that the melt phase can effectively be squeezed out from a crystal-rich magma when subjected to a given pressure gradient range. This demonstrates that crystal-melt segregation in dykes during granitic magma ascent constitutes a viable mechanism for magmatic differentiation.
机译:过去,对堤坝中上升的纯熔体的流变学和动力学进行了广泛的研究。从现场观察,很明显,大多数堤坝实际上都含有结晶负荷。结晶负载的存在改变了这种系统的有效流变性,从而改变了流动性能。实际上,与熔体相比,每种晶体的较高密度和粘度会导致上升速度降低,并改变速度分布的形状,从典型的泊瓦伊埃流到宾汉型流。在该领域中观察到的一个共同特征是晶体的排列与堤的边缘平行或成很小的角度。这种结构安排通常被解释为岩浆流动的结果,岩浆流动导致晶体在流动方向上旋转并排列,但是这一过程仍然不清楚。与引入晶体载荷有关的另一个问题涉及在岩浆上升过程中晶体与粘性花岗岩熔体相分离的可能性。以前没有考虑过这种过程对岩浆分化的影响,以前也没有通过数值模型研究过这种过程。在这项研究中,我们通过数值模型研究了在堤中上升的含晶体花岗岩熔体的流动动力学。在我们的模型中,在斯托克斯状态下,结晶相和熔体相均表示为高粘度流体。我们的结果表明,熔体中晶体的存在改变了堤坝的岩浆速度分布。此外,我们观察到,尽管晶体在剪切流中持续旋转,但旋转一圈后,其主轴很可能平行于流向对齐。此外,一些实验表明,在给定的压力梯度范围内,熔体相可以有效地从富含晶体的岩浆中挤出。这表明,在岩浆岩浆上升过程中,堤坝中的晶体熔体偏析构成了岩浆分化的可行机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号