...
首页> 外文期刊>Journal of Volcanology and Geothermal Research2012V243-244NOCT,15 >Numerical modelling of dykes deflected into sills to form a magma chamber
【24h】

Numerical modelling of dykes deflected into sills to form a magma chamber

机译:堤坝弯曲成岩浆室的数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Most shallow magma chambers are thought to evolve from sills. For this to happen, several conditions must be met. (1) There must be a discontinuity, normally a contact, that deflects a dyke (or an inclined sheet) into a sill. (2) The initial sill must have a considerable thickness, normally (depending on dyke injection rates) not less than some tens of metres. (3) The resulting sill must receive magma (through dykes) frequently enough so as to stay liquid and expand into a chamber. (4) The resulting magma chamber must remain at least partially molten and receive multiple magma injections over a given period of time to build up a volcano on the surface above. In this paper we present numerical models based upon field data and geophysical data as to how sills are emplaced and may subsequently evolve into shallow magma chambers. We suggest that most sills form when dykes meet contacts, particularly weak ones, which are unfavourable to dyke propagation. A contact may halt (arrest) a dyke altogether or, alternatively, deflect the dyke into the contact. The three main mechanisms for dyke deflection into a contact are (1) the Cook-Gordon debonding or delamination, (2) rotation of the principal stresses, generating a stress barrier, and (3) an elastic mismatch across a contact between adjacent layers. Elastic mismatch means that the layers have contrasting Young's moduli and varying material toughness. Once a sill is initiated, the developing magma chamber may take various forms. Many shallow magma chambers, however, tend to maintain a straight sill-like or somewhat flat (oblate) ellipsoidal geometry during their lifetimes. For a sill to evolve into a magma chamber there must be elastic-plastic deformation of the overburden and, to some extent, of the underburden. So long as the sill stays liquid, subsequent dyke injections become arrested on meeting the sill. Some magma chambers develop from sill complexes. For the sill complex to remain partially molten it must receive a constant replenishment of magma, implying a high dyke-injection rate. Alternatively, an initial comparatively thick sill may absorb much of the magma of the dykes that meet it and evolve into a single shallow magma chamber. (C) 2014 Elsevier B.V. All rights reserved.
机译:大多数浅层岩浆房被认为是从基石演化而来的。为此,必须满足几个条件。 (1)必须有一个不连续点,通常是一个接触点,它将堤(或倾斜的板)偏转到门槛上。 (2)最初的门槛必须有足够的厚度,通常(取决于堤坝的注入速度)不少于几十米。 (3)产生的门槛必须经常接受岩浆(通过堤坝),以保持液态并扩展到室内。 (4)所得的岩浆室必须保持至少部分熔融状态,并在给定的时间内接受多次岩浆注入,以在上面的表面上建立火山。在本文中,我们介绍了基于野外数据和基岩数据的数值模型,说明了基石如何被放置并可能随后演化成浅岩浆室。我们建议,大多数堤基是在堤坝接触时形成的,特别是弱势的堤坝,不利于堤坝的传播。接触点可能会完全停止(阻止)堤坝,或者将堤坝偏转到接触点中。堤坝偏转到接触点的三个主要机制是:(1)Cook-Gordon剥离或分层;(2)主应力的旋转,产生应力屏障;(3)相邻层之间接触点之间的弹性失配。弹性失配意味着这些层具有相反的杨氏模量和变化的材料韧性。一旦开始槛,发育的岩浆腔可以采取各种形式。然而,许多浅岩浆室在其一生中往往会保持直的窗台状或略微平坦的(扁圆的)椭圆形几何形状。为了使门槛演变成岩浆室,上覆岩层必须在一定程度上发生弹塑性变形。只要窗台保持液态,随后的堤坝注射就会在达到窗台时停止。一些岩浆室是由门槛复合体形成的。为了使门槛复合体保持部分熔融状态,必须不断补充岩浆,这意味着高的堤坝注入率。可替代地,初始的相对较厚的基岩可以吸收与其相遇的堤坝的许多岩浆,并演变成一个浅岩浆室。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号