...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism.
【24h】

Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism.

机译:磷酸三糖异构酶与反应中间体类似物的复合物的原子分辨晶体学:质子转移反应机理的新见解。

获取原文
获取原文并翻译 | 示例
           

摘要

Enzymes achieve their catalytic proficiency by precisely positioning the substrate and catalytic residues with respect to each other. Atomic resolution crystallography is an excellent tool to study the important details of these geometric active-site features. Here, we have investigated the reaction mechanism of triosephosphate isomerase (TIM) using atomic resolution crystallographic studies at 0.82-A resolution of leishmanial TIM complexed with the well-studied reaction-intermediate analog phosphoglycolohydroxamate (PGH). Remaining unresolved aspects of the reaction mechanism of TIM such as the protonation state of the first reaction intermediate and the properties of the hydrogen-bonding interactions in the active site are being addressed. The hydroxamate moiety of PGH interacts via unusually short hydrogen bonds of its N1-O1 moiety with the carboxylate group of the catalytic glutamate (Glu167), for example, the distance of N1(PGH)-OE2(Glu167) is 2.69 +/- 0.01 A and the distance of O1(PGH)-OE1(Glu167) is 2.60 +/- 0.01 A. Structural comparisons show that the side chain of the catalytic base (Glu167) can move during the reaction cycle in a small cavity, located above the hydroxamate plane. The structure analysis suggests that the hydroxamate moiety of PGH is negatively charged. Therefore, the bound PGH mimics the negatively charged enediolate intermediate, which is formed immediately after the initial proton abstraction from DHAP by the catalytic glutamate. The new findings are discussed in the context of the current knowledge of the TIM reaction mechanism.
机译:酶通过将底物和催化残基相对于彼此精确定位来实现其催化能力。原子分辨率晶体学是研究这些几何活性部位特征的重要细节的出色工具。在这里,我们已使用原子分辨率晶体学研究方法研究了磷酸甘油糖异构酶(TIM)的反应机理,该方法在0.82A的利什曼TIM分辨率与经过充分研究的反应中间体类似物磷酸羟基羟肟酸酯(PGH)配合下进行了研究。 TIM的反应机理的其余未解决方面,例如第一反应中间体的质子化状态和活性位点中氢键相互作用的性质,都得到了解决。 PGH的异羟肟酸酯部分通过其N1-O1部分的异常短的氢键与催化谷氨酸(Glu167)的羧酸酯基相互作用,例如,N1(PGH)-OE2(Glu167)的距离为2.69 +/- 0.01 A和O1(PGH)-OE1(Glu167)的距离为2.60 +/- 0.01A。结构比较表明,催化碱(Glu167)的侧链在反应周期中可以在位于反应器上方的小腔中移动。异羟肟酸酯平面。结构分析表明PGH的异羟肟酸酯部分带负电。因此,结合的PGH模仿带负电的烯丙酸酯中间体,该中间体是在催化谷氨酸从DHAP提取质子后立即形成的。在TIM反应机理的最新知识的背景下讨论了新发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号