...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase.
【24h】

Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase.

机译:酶催化中的底物极化:QM / MM分析草酸乙酸酯极化对柠檬酸合酶中乙酰辅酶A烯化作用的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Citrate synthase is an archetypal carbon-carbon bond forming enzyme. It promotes the conversion of oxaloacetate (OAA) to citrate by catalyzing the deprotonation (enolization) of acetyl-CoA, followed by nucleophilic attack of the enolate form of this substrate on OAA to form a citryl-CoA intermediate and subsequent hydrolysis. OAA is strongly bound to the active site and its alpha-carbonyl group is polarized. This polarization has been demonstrated spectroscopically, [(Kurz et al., Biochemistry 1985;24:452-457; Kurz and Drysdale, Biochemistry 1987;26:2623-2627)] and has been suggested to be an important catalytic strategy. Substrate polarization is believed to be important in many enzymes. The first step, formation of the acetyl-CoA enolate intermediate, is thought to be rate-limiting in the mesophilic (pig/chicken) enzyme. We have examined the effects of substrate polarization on this key step using quantum mechanical/molecular mechanical (QM/MM) methods. Free energy profiles have been calculated by AM1/CHARMM27 umbrella sampling molecular dynamics (MD) simulations, together with potential energy profiles. To study the influence of OAA polarization, profiles were calculated with different polarization of the OAA alpha-carbonyl group. The results indicate that OAA polarization influences catalysis only marginally but has a larger effect on intermediate stabilization. Different levels of treatment of OAA are compared (MM or QM), and its polarization in the protein and in water analyzed at the B3LYP/6-31+G(d)/CHARMM27 level. Analysis of stabilization by individual residues shows that the enzyme mainly stabilizes the enolate intermediate (not the transition state) through electrostatic (including hydrogen bond) interactions: these contribute much more than polarization of OAA.
机译:柠檬酸合酶是原型碳-碳键形成酶。它通过催化乙酰辅酶A的去质子化(烯醇化),然后在OAA上对该底物的烯酸酯形式进行亲核攻击,从而促进草酰乙酸酯(OAA)向柠檬酸的转化,从而形成柠檬酰CoA中间体并随后水解。 OAA与活性位点牢固结合,其α-羰基被极化。这种极化已在光谱学上得到证实[(Kurz等人,Biochemistry 1985; 24:452-457; Kurz和Drysdale,Biochemistry 1987; 26:2623-2627)],并被认为是重要的催化策略。底物极化被认为在许多酶中很重要。第一步,即形成乙酰辅酶A烯醇化物中间体,被认为是嗜温(猪/鸡)酶的限速。我们已经使用量子力学/分子力学(QM / MM)方法检查了衬底极化对这一关键步骤的影响。通过AM1 / CHARMM27伞式采样分子动力学(MD)模拟计算了自由能分布以及势能分布。为了研究OAA极化的影响,计算了OAAα-羰基的不同极化分布。结果表明,OAA极化仅对催化作用有少许影响,但对中间稳定作用影响更大。比较了OAA的不同处理水平(MM或QM),并以B3LYP / 6-31 + G(d)/ CHARMM27的水平分析了其在蛋白质和水中的极化。通过单个残基进行的稳定性分析表明,该酶主要通过静电(包括氢键)相互作用来稳定烯醇式中间体(而非过渡态):这些作用远远超过了OAA的极化作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号