首页> 外文期刊>Progress in photovoltaics >Extremely low surface recombination velocities on low-resistivity n-type and p-type crystalline silicon using dynamically deposited remote plasma silicon nitride films
【24h】

Extremely low surface recombination velocities on low-resistivity n-type and p-type crystalline silicon using dynamically deposited remote plasma silicon nitride films

机译:使用动态沉积的远程等离子体氮化硅膜在低电阻率n型和p型晶体硅上的极低表面复合速度

获取原文
获取原文并翻译 | 示例
           

摘要

Extremely low upper-limit effective surface recombination velocities (S_(eff.max)) of 5.6 and 7.4 cm/s, respectively, are obtained on ~1.5Ωcm n-type and p-type silicon wafers, using silicon nitride (SiN_x) films dynamically deposited in an industrial inline plasma-enhanced chemical vapour deposition (PECVD) reactor. SiN_x films with optimised antireflective properties in air provide an excellent S_(eff.max) of 9.5 cm/s after high-temperature (>800 ℃) industrial firing. Such low S_(eff.max) values were previously only attainable for SiN_x films deposited statically in laboratory reactors or after optimised annealing; however, in our case, the SiN_x films were dynamically deposited onto large-area c-Si wafers using a fully industrial reactor and provide excellent surface passivation results both in the as-deposited condition and after industrial-firing, which is a widely used process in the photovoltaic industry. Contactless corona-voltage measurements reveal that these SiN_x films contain a relatively high positive charge of (4-8) x 10~(12)cm~(-2) combined with a relatively low interface defect density of ~5 x 10~(11) eV~(-1) cm~(-2).
机译:使用氮化硅(SiN_x)膜在约1.5Ωcm的n型和p型硅晶片上分别获得5.6和7.4 cm / s的极低上限有效表面复合速度(S_(eff.max))动态沉积在工业在线等离子体增强化学气相沉积(PECVD)反应器中。经过优化的空气中SiN_x膜在高温(> 800℃)工业烧成后具有9.5 cm / s的出色S_(eff.max)。这样的低S_(eff.max)值以前只能通过静态沉积在实验室反应器中或经过优化退火后的SiN_x薄膜才能实现;但是,在我们的案例中,SiN_x膜是使用完全工业化的反应器动态沉积到大面积c-Si晶片上的,并且在沉积状态和工业烧成后均提供出色的表面钝化结果,这是一种广泛使用的工艺在光伏行业。非接触电晕电压测量表明,这些SiN_x膜包含(4-8)x 10〜(12)cm〜(-2)的相对较高的正电荷,以及〜5 x 10〜(11)的相对较低的界面缺陷密度。 )eV〜(-1)cm〜(-2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号