首页> 外文期刊>Progress in photovoltaics >Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells
【24h】

Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells

机译:用于多结太阳能电池的Ge1-x-ySixSny三元合金的电子结构

获取原文
获取原文并翻译 | 示例
           

摘要

Ternary group-IV alloys have a wide potential for applications in infrared devices and optoelectronics. In connection with photovoltaic applications, they are among the most promising materials for inclusion in the next generation of high-efficiency multijunction solar cells, because they can be lattice matched to substrates as GaAs and Ge, offering the possibility of a range of band gaps complementary to III-V semiconductors. Apart from the full decoupling of lattice and band structures in Ge1-x-ySixSny alloys, experimentally confirmed, they allow preparation in a controllable and large range of compositions, thus enabling to tune their band gap. Recently, optical experiments on ternary alloy-based films, photodetectors measured the direct absorption edges and probed the compositional dependence of the direct gap. The nature of the fundamental gap of Ge1-x-ySixSny alloys is still unknown, as neither experimental data on the indirect edges nor electronic structure calculations are available, as yet. Here, we report a first calculation of the electronic structure of Ge1-x-ySixSny ternary alloys, employing a combined tight-binding and virtual crystal approximation method, which proved to be useful to describe group-IV semiconductor binary alloys. Our results confirm predictions and experimental indications that a 1eV band gap is indeed attainable with these ternary alloys, as required for the fourth layer plan to be added to present-day record-efficiency triple-junction solar cells, to further increase their efficiency, for example, for satellite applications. When lattice matched to Ge, we find that Ge1-x-ySixSny ternary alloys have an indirect gap with a compositional dependence reflecting the presence of two competing minima in the conduction band. Copyright (c) 2013 John Wiley & Sons, Ltd.
机译:三元IV族合金在红外设备和光电子学中具有广阔的应用前景。在光伏应用方面,它们是下一代高效多结太阳能电池中最有前途的材料之一,因为它们可以与GaAs和Ge等衬底晶格匹配,从而提供了一系列带隙互补的可能性到III-V半导体。除了实验证实的Ge1-x-ySixSny合金中的晶格和能带结构完全解耦外,它们还可以制备可控且范围广泛的成分,从而调节其带隙。最近,在基于三元合金的薄膜上进行光学实验,光电探测器测量了直接吸收边并探查了直接间隙的成分依赖性。 Ge1-x-ySixSny合金的基本能隙的性质仍是未知的,因为尚无关于间接边缘的实验数据或电子结构的计算。在这里,我们报告了采用结合紧密结合和虚拟晶体近似方法对Ge1-x-ySixSny三元合金的电子结构进行的首次计算,这被证明对描述IV型半导体二元合金很有用。我们的结果证实了预测和实验指示,这些三元合金的确可以达到1eV的带隙,这是将第四层计划添加到当今记录效率高的三结太阳能电池中,以进一步提高其效率的目的。例如,用于卫星应用。当晶格与Ge匹配时,我们发现Ge1-x-ySixSny三元合金具有间接间隙,其成分依赖性反映了导带中存在两个竞争极小值。版权所有(c)2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号