...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology >Strain-rate effects on the plastic indentation and abrasion of elastohydrodynamic contacts by debris particles
【24h】

Strain-rate effects on the plastic indentation and abrasion of elastohydrodynamic contacts by debris particles

机译:应变速率对碎屑颗粒对弹性流体动力接触的塑性压痕和磨损的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A numerical model of plastic indentation and abrasion of elastohydrodynamic contacts by debris particles previously developed by the author is extended to include the dependence of material flow stress on strain rate. Using the Johnson-Cook viscoplasticity model, the flow stress of all materials involved in the indentation process is expressed as a function of plastic strain, strain rate and temperature. This complements other elements of the model, including strain-gradient plasticity, work-hardening, frictional heating from particle extrusion, thermal softening, melting and material loss due to adhesion. Following a laborious programme of experimental validation and numerical comparisons, the predictions of the model are shown to be in excellent agreement with the experimental results on soft and hard particles in rolling and rolling-sliding elastohydrodynamic contacts. The incorporation of strain-rate effects further improved the agreement between theoretical and experimental results previously established with simpler versions of the model that ignored the strain-rate factor. Strain rate is also shown to affect several parameters in the process of surface damage, including the magnitude of contact stresses and flash temperatures, as well as the behaviour of a particle in a concentrated contact. It is also shown that for an optimum contact velocity linked to strain-rate effects and fluid film thickness in lubricated contacts, surface damage is minimised, particularly for large and hard particles.
机译:作者先前开发的由碎屑颗粒产生的弹性流体动力接触的塑性压痕和磨损的数值模型被扩展为包括材料流动应力对应变率的依赖性。使用Johnson-Cook粘塑性模型,压痕过程中涉及的所有材料的流动应力均表示为塑性应变,应变速率和温度的函数。这补充了模型的其他元素,包括应变梯度可塑性,加工硬化,颗粒挤压产生的摩擦加热,热软化,熔化以及由于粘附而造成的材料损失。经过费力的实验验证和数值比较程序,模型的预测与滚动和滚动滑动弹性流体力学接触中的软和硬颗粒实验结果非常吻合。应变率效应的纳入进一步改善了先前通过忽略应变率因子的简单模型版本建立的理论和实验结果之间的一致性。还显示出应变速率会影响表面损伤过程中的几个参数,包括接触应力和闪蒸温度的大小,以及集中接触中颗粒的行为。还显示出,为了获得与应变率效应和润滑触点中的流体膜厚度相关的最佳接触速度,可以将表面损伤最小化,尤其是对于大颗粒和硬颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号