...
首页> 外文期刊>Polymers for advanced technologies >Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane
【24h】

Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane

机译:在功能化粘土和聚硅氧烷的存在下,使用大气压等离子体对织物进行表面改性,以提高耐闪火性

获取原文
获取原文并翻译 | 示例
           

摘要

Improving flash-fire resistance of otherwise flame resistant fabrics is a recognized challenge within the civil emergency and defence communities. Simulation of the flash-fire condition using cone calorimetry has demonstrated the effectiveness of atmospheric plasma treatments in which either a functionalized clay, a polysiloxane (poly(-hexamethyldisiloxane)) or both are deposited on to plasma-activated fiber surfaces. Textile substrates comprised flame retardant (Proban) cotton and a poly (meta-aramid) (Nomex). Results show that the generated surface layer has a measurable effect on fabric ignition and burning characteristics when exposed in a cone calorimeter at heat flux levels up to 70 kW/m~2. Reductions in peak heat release rates (PHRR) are observed for all substrates especially for argon/clay and argon/clay/polysiloxane, plasma-treated samples, with reductions of over 50% being observed for Proban cotton and smaller reductions (≤20%) for Nomex fabrics. Gravimetric, scanning electron microscopic, and cone calorimetric studies show that both original surface deposits and subsequent properties are retained after a simulated washing process including the argon/clay plasma-treated Proban and Nomex fabrics in which no potentially binding polysiloxane was present. This suggests that plasma-activated fiber surfaces in the presence of a functionalized clay enable relatively strong binding forces to be generated. The results provide further evidence in addition to our earlier reported studies that atmospheric plasma treatment of fabric surfaces in the presence of a functionalized clay produces an inorganic coating that confers reduced flammability at the high heat fluxes used suggesting increased resistance to flash-fire ignition.
机译:在民用紧急情况和国防领域,提高其他阻燃织物的耐闪火性是公认的挑战。使用锥形量热法对闪燃条件的模拟证明了大气等离子体处理的有效性,其中功能化粘土,聚硅氧烷(聚(六甲基二硅氧烷))或两者均沉积在等离子体活化的纤维表面上。纺织品基材包括阻燃(Proban)棉和聚(间位芳纶)(Nomex)。结果表明,在锥形量热仪中以高达70 kW / m〜2的热通量暴露时,生成的表面层对织物的起火和燃烧特性具有可测量的影响。观察到所有底物的峰值放热率(PHRR)均降低,尤其是氩/粘土和氩/粘土/聚硅氧烷等离子处理样品,其中Proban棉降低了50%以上,降幅较小(≤20%)用于Nomex织物。重量分析,扫描电子显微镜和锥形量热研究表明,经过模拟洗涤后,包括经氩气/粘土等离子体处理的Proban和Nomex织物(其中不存在潜在结合的聚硅氧烷),原始表面沉积物和后续性能均得以保留。这表明在功能化粘土的存在下,等离子体活化的纤维表面能够产生相对较强的结合力。除我们先前报道的研究外,该结果还提供了进一步的证据,即在功能化粘土存在下对织物表面进行大气等离子处理会产生一种无机涂层,该涂层在所用的高热通量下可燃性降低,这表明耐闪火性增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号