首页> 外文学位 >Surface Modification by Atmospheric Pressure Plasma for Improved Bonding.
【24h】

Surface Modification by Atmospheric Pressure Plasma for Improved Bonding.

机译:通过大气压等离子体进行表面改性,以改善粘合效果。

获取原文
获取原文并翻译 | 示例

摘要

An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ∼10 16 cm-3 oxygen atoms, ∼1015 cm -3 ozone molecules and ∼1016 cm-3 metastable oxygen molecules (O21Δg) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation.;Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378±0.011 hr-1 to 0.182±0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the silicon wafers in the presence of activated carbon or in a freezer at -22°C.;The enhancement of adhesive bond strength and durability for carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal surface and an increase in the concentration of hydroxyl groups in the oxide film. Following plasma activation, the total hydroxyl species concentration on stainless steel increased from 31% to 57%, while aluminum exhibited an increase from 4% to 16% hydroxyl species. Plasma activation of the surface led to an increase in bond strength of the different surfaces by up to 150% when using Cytec FM300 and FM300-2 epoxy adhesives. Wedge crack extension tests following plasma activation revealed cohesive failure percentages of 97% for carbon-fiber/epoxy composite bonded to stainless steel, and 96% for aluminum bonded to itself. The bond strength and durability of the substrates correlated with changes in the specific surface chemistry, not the wetting angle or the morphological properties of the material. This suggests that enhanced chemical bonding at the interface was responsible for the improvement in mechanical properties following plasma activation.;The surface preparation of polymers and composites using atmospheric pressure plasmas is a promising technique for replacing traditional methods of surface preparation by sanding, grit blasting or peel ply. After oxygen plasma activation and joining the materials together with epoxy, one observes 100% cohesive failure within the cured film adhesive. Depending on the material, the lap shear strength can be increased several fold over that achieved by either solvent wiping or abrasion. The trends in adhesion with plasma exposure time do not correlate well with surface wetting or roughness; instead they correlate with the fraction of the polymer surface sites that are converted into carboxylic acid groups.
机译:在低于150?C的温度下操作并注入氦气中1.0-3.0体积%的氧气的大气压等离子体源用于活化硅,碳纤维增强的环氧复合材料,410型不锈钢和铝上的天然氧化物的表面2024合金。氦气和氧气通过等离子源,从而发生电离,并产生〜10 16 cm-3氧原子,〜1015 cm -3臭氧分子和〜1016 cm-3亚稳氧分子(O21Δg)。将等离子体余辉引导到位于下游4 mm的基材上。已使用水接触角(WCA),原子力显微镜(AFM),红外光谱(IR)和X射线光电子能谱(XPS)研究了经过等离子体处理的材料的表面性能。本文介绍的工作将大气压等离子体确立为一种表面制备技术,非常适合多种材料中的表面活化和增强的粘合强度。大气等离子体活化提供了一种湿法化学和磨蚀表面处理方法的环保替代品。;采用全反射全反射红外光谱法研究了硅上天然氧化物的老化机理。在环境条件下存储期间,清洁表面的水接触角在12小时内从<5°增大到40°。在氮气吹扫下存放时,清洁表面的水接触角在40-60小时内从<5°增大到30°。接触角的变化是由于壬醛吸附到暴露的表面羟基上。氮气吹扫下壬醛的吸附速率范围为0.378±0.011 hr-1至0.182±0.008 hr -1分子/(cm2•s),随着氢键合羟基分数从49%增加至96 %在SiO 2表面上。通过将硅片存放在活性炭中或在-22°C的冰箱中可以无限期地抑制有机污染物的吸附;增强碳纤维增强环氧复合材料,不锈钢的粘合强度和耐久性410型和铝合金2024用大气压氦氧等离子体进行了演示。在等离子体暴露的5秒钟内,将所有研究的表面从水接触角为65°到80°的疏水状态转变为水接触角在20°和40°之间的亲水状态。 X射线光电子能谱证实,碳纤维/环氧树脂复合材料上的碳原子被氧化,产生17原子%的羧酸基团,10%的酮或醛和9%的醇。通过XPS对不锈钢和铝的分析表明金属表面的氧化和氧化膜中羟基浓度的增加。等离子体活化后,不锈钢上的总羟基物质浓度从31%增加到57%,而铝的羟基物质浓度从4%增加到16%。当使用Cytec FM300和FM300-2环氧胶粘剂时,表面的等离子体活化导致不同表面的结合强度提高了150%。等离子体活化后的楔形裂纹扩展测试表明,粘结到不锈钢上的碳纤维/环氧树脂复合材料的内聚破坏百分比为97%,粘结到自身上的铝的粘结破坏百分比为96%。基材的粘合强度和耐用性与特定表面化学性质的变化相关,与材料的润湿角或形态特性无关。这表明在等离子体活化后,界面处增强的化学键合有助于改善机械性能。使用大气压等离子体对聚合物和复合材料进行表面处理是一种有前途的技术,可替代传统的表面处理方法,例如通过打磨,喷砂或剥皮。在氧等离子体活化并将材料与环氧树脂连接后,人们会观察到固化膜胶粘剂内部发生100%的内聚破坏。根据材料的不同,搭接剪切强度可以比通过溶剂擦拭或磨损实现的剪切强度提高几倍。血浆暴露时间的粘附趋势与表面润湿性或粗糙度没有很好的相关性。相反,它们与转化为羧酸基团的聚合物表面部位的分数相关。

著录项

  • 作者

    Williams, Thomas Scott.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Chemical.;Physics Fluid and Plasma.;Plastics Technology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号