...
首页> 外文期刊>Plant Molecular Biology >Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress
【24h】

Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress

机译:表达来自嗜盐甲烷菌的渗透液甘氨酸甜菜碱合成酶的转基因拟南芥提高了对干旱和盐胁迫的耐受性

获取原文
获取原文并翻译 | 示例
           

摘要

Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1~T is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.
机译:甘氨酸甜菜碱(甜菜碱)具有最高的细胞渗透保护效率,这种作用不能在大多数糖类植物中积累。高等植物中甜菜碱的生物合成途径源自低积累代谢物胆碱的氧化,这限制了大多数植物生产甜菜碱的能力。嗜盐甲烷古细菌Methanohalophilus portucalensis FDF1〜T是一种模型厌氧产甲烷菌,用于研究甘氨酸肌氨酸N-甲基转移酶(GSMT)和肌氨酸催化的甘氨酸逐步甲基化从头合成甜菜碱的缺水胁迫的适应性。在此报告中,将编码这些甜菜碱生物合成酶的基因Mpgsmt和Mpsdmt引入了拟南芥。纯合的Mpgsmt(G),Mpsdmt(S)及其杂交的Mpgsmt和Mpsdmt(G×S)植物显示甜菜碱的积累增加。与野生型(WT)相比,G,S和G×S系中叶片脱落的水分流失较慢。在禁水9天或用300 mM NaCl灌溉9天后,盆栽转基因植物显示出比WT更好的生长。在盐胁迫下,G,S,G×S系的相对含水量和光系统II活性也比WT高。这表明异源表达的Mpgsmt和Mpsdmt可以增强拟南芥对干旱和盐胁迫的耐受性。我们还发现,盐胁迫的G系叶片中季铵化合物增加了两倍,这可能是由于高盐度激活了GSMT活性。这项研究表明,引入应激激活酶是一种避免正常生长条件下主要代谢产物发散的方法,同时还可以在压力环境下提供保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号