首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule
【24h】

Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule

机译:固态量子计算机的希尔伯特空间结构:双量子点人工分子的两个电子态

获取原文
获取原文并翻译 | 示例
           

摘要

We theoretically study a double-quantum-dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer, with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. in particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope-function approach in the current scheme, and also the merits of various quantum-chemical approaches in dealing with few-electron problems in quantum dots, such as the Hartree-Fock self-consistent-field method, the molecular-orbital method, the Heisenberg model, and the Hubbard model. We also discuss a number of relevant issues in quantum dot quantum computing in the context of our calculations, such as the required design tolerance, spin decoherence, adiabatic transitions, magnetic-field control, and error correction.
机译:我们在理论上研究了GaAs导带中的双量子点氢分子,作为量子计算机的基本基本门,其中电子自旋在量子点中作为量子位。这种两点系统提供了量子计算所需的必要的两量子位纠缠。我们确定具有两个约束电子的两个水平耦合量子点的激发光谱,并研究其对外部磁场的依赖性。特别地,我们关注于最低的单重态和三重态的分裂,最低态的双重占领概率以及这些态的相对能级。我们指出,在零磁场下,很难同时消除因错误率低而导致的双重占领概率消失和难以实现快速门控的较大交换耦合。另一方面,有限的磁场可以为量子计算机操作提供有限的交换耦合,并且误差很小。我们批判性地讨论了包络函数方法在当前方案中的适用性,以及各种量子化学方法在解决量子点中的少数电子问题方面的优点,例如Hartree-Fock自洽场方法,分子轨道方法,海森堡模型和哈伯德模型。在我们的计算环境中,我们还将讨论量子点量子计算中的许多相关问题,例如所需的设计公差,自旋退相干,绝热转变,磁场控制和误差校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号