...
首页> 外文期刊>Physica, E. Low-dimensional systems & nanostructures >Gate control of the spin-splitting energy in a quantum dot: Application in single qubit rotation
【24h】

Gate control of the spin-splitting energy in a quantum dot: Application in single qubit rotation

机译:量子点中自旋分裂能量的门控制:在单量子位旋转中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We numerically calculate modulation of the spin-splitting energy in an asymmetric quantum dot due to an external electrostatic potential (applied via gates) that induces the Rashba spin-orbit interaction. The quantum dot has finite potential barriers and contains a built-in electric field (due to doping or compositional variation) that makes the potential profile asymmetric in space. It is placed in a magnetic field which lifts the spin degeneracy of every subband due to the Zeeman effect and we calculate by how much the Rashba interaction can change the total spin-splitting energy in the lowest subband. In the past, a perturbative solution that ignored "spin texturing" effects indicated that (1) the Rashba interaction always increases the total spin-splitting energy and that (2) the increase is a negligible fraction (<0.1%) of the total spin-splitting energy for reasonable parameters. The more accurate non-perturbative solution presented here accounts for spin texturing and shows that (1) the total spin-splitting energy may actually decrease (instead of increasing) owing to the Rashba effect and that (2) the Rashba interaction can decrease the spin-splitting energy by >50% for reasonable parameters. A modulation this large can be used for single qubit rotation in a quantum gate.
机译:由于外部静电势(通过门施加)导致Rashba自旋轨道相互作用,因此我们在数值上计算了不对称量子点中自旋分裂能量的调制。量子点具有有限的势垒,并包含一个内置电场(由于掺杂或成分变化),该电场使电势轮廓在空间中不对称。它被放置在一个磁场中,该磁场由于塞曼效应而提高了每个子带的自旋简并性,我们计算出Rashba相互作用能改变最低子带中总的自旋分裂能量的多少。过去,忽略“旋转纹理”效应的摄动解表明:(1)Rashba相互作用始终会增加总的自旋分裂能,并且(2)的增加是总自旋的可忽略的分数(<0.1%) -为合理的参数分配能量。这里介绍的更精确的非摄动解可以解决自旋纹理问题,并显示(1)由于Rashba效应,总的自旋分裂能实际上可能降低(而不是增加),并且(2)Rashba相互作用可以降低自旋为合理的参数将能量分解> 50%。如此大的调制可用于量子门中的单个量子位旋转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号