首页> 外文期刊>World journal of modelling and simulation >Bernoulli Wavelet Based Numerical Method for Solving Fredholm Integral Equations of the Second Kind
【24h】

Bernoulli Wavelet Based Numerical Method for Solving Fredholm Integral Equations of the Second Kind

机译:基于伯努利小波的数值方法求解第二类Fredholm积分方程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a Bernoulli wavelet based numerical method for the solution of Fredholm integral equations of the second kind is proposed. The method is based upon Bernoulli wavelet approximations. The Bernoulli wavelet (BW) is first presented and the resulting Bernoulli wavelet matrices are utilized to reduce the Fredholm integral equations into algebraic equations. Solving these equations using MATLAB to obtain Bernoulli coefficients. The numerical results of the proposed method through the illustrative examples is presented in comparison with the exact and existing methods (Haar wavelet method (HWM), Hermite cubic splines (HCS)) of solution from the literature are shown in tables and figures, which show that the validity and applicability of the technique with higher accuracy even for the smaller values of N.
机译:本文提出了一种基于伯努利小波的数值方法来求解第二类Fredholm积分方程。该方法基于伯努利小波逼近。首先介绍了伯努利小波(BW),然后将所得的伯努利小波矩阵用于将Fredholm积分方程简化为代数方程。使用MATLAB求解这些方程,以获得伯努利系数。表中和图表中显示了该方法的数值结果,并通过举例说明了与文献中的精确解和现有解法(Haar小波法(HWM),Hermite三次样条线(HCS))进行比较的结果。即使对于较小的N值,该技术的准确性和准确性也更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号