首页> 外文期刊>Wireless Networks >Distributed resource management in wireless sensor networks using reinforcement learning
【24h】

Distributed resource management in wireless sensor networks using reinforcement learning

机译:使用强化学习的无线传感器网络中的分布式资源管理

获取原文
获取原文并翻译 | 示例

摘要

In wireless sensor networks (WSNs), resource-constrained nodes are expected to operate in highly dynamic and often unattended environments. Hence, support for intelligent, autonomous, adaptive and distributed resource management is an essential ingredient of a middleware solution for developing scalable and dynamic WSN applications. In this article, we present a resource management framework based on a two-tier reinforcement learning scheme to enable autonomous self-learning and adaptive applications with inherent support for efficient resource management. Our design goal is to build a system with a bottom-up approach where each sensor node is responsible for its resource allocation and task selection. The first learning tier (micro-learning) allows individual sensor nodes to self-schedule their tasks by using only local information, thus enabling a timely adaptation. The second learning tier (macro-learning) governs the micro-learners by tuning their operating parameters so as to guide the system towards a global application-specific optimization goal (e.g., maximizing the network lifetime). The effectiveness of our framework is exemplified by means of a target tracking application built on top of it. Finally, the performance of our scheme is compared against other existing approaches by simulation. We show that our two-tier reinforcement learning scheme is significantly more efficient than traditional approaches to resource management while fulfilling the application requirements.
机译:在无线传感器网络(WSN)中,预计资源受限的节点将在高度动态且通常无人值守的环境中运行。因此,对智能,自主,自适应和分布式资源管理的支持是用于开发可扩展和动态WSN应用程序的中间件解决方案的重要组成部分。在本文中,我们提出了一种基于两层强化学习方案的资源管理框架,以使自主学习和自适应应用程序能够有效支持资源管理。我们的设计目标是使用自下而上的方法构建一个系统,其中每个传感器节点负责其资源分配和任务选择。第一学习层(微学习)允许各个传感器节点仅通过使用本地信息来自行安排其任务,从而实现及时的适应。第二学习层(宏学习)通过调整微学习器的操作参数来管理微学习器,从而引导系统朝着特定于全局的特定应用程序优化目标(例如,最大化网络寿命)。我们的框架的有效性通过在其之上构建的目标跟踪应用程序得到了体现。最后,通过仿真将我们方案的性能与其他现有方法进行了比较。我们证明,在满足应用程序要求的同时,我们的两层强化学习方案比传统的资源管理方法效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号