首页> 外文期刊>Wireless Networks >A belief function-based forecasting link breakage indicator for VANETs
【24h】

A belief function-based forecasting link breakage indicator for VANETs

机译:基于信仰的函数预测vanets的链接断裂指示灯

获取原文
获取原文并翻译 | 示例

摘要

In Vehicular Ad-Hoc Networks, a link failure may occur due to non-optimal channel conditions, congestion or node mobility which causes data loss. Common proposed approaches try to overcome this problem by anticipating link disruptions with MAC layer indicators. Such methods, particularly in urban environments (i.e. highly dynamic) are ineffective. Our aim is to setup an indicator that detects at the PHY level an upcoming link breakage before it causes packet loss at the NET layer. To this end, we use Orthogonal Frequency-Division Multiplexing decoding events that are combined thanks to the Dempster-Shafer Theory (DST). The proposed indicator, called Link Breakage Forecasting Indicator performs for a given link, an analysis based on decoding error density measurements, in order to maintain the link history. The adaptation of the DST to the analyzed phenomena relies on using mass functions controlled by the reception power, the relative speed and the error density. The link failure probability is obtained thanks to the fusion of these heterogeneous information using the cautious combination rule. The later allows to consider data even if it is dependent without providing biased results. Simulation results show that detection times are suitable and robust against mobility related characteristics, such as vehicle speeds and urban environment variability.
机译:在车辆ad-hoc网络中,由于非最佳信道条件,拥塞或节点移动性导致数据丢失,可能会发生链路故障。常见的建议方法试图通过预期与MAC层指示器的链路中断来克服这个问题。这些方法,特别是在城市环境中(即高度动态)无效。我们的目标是设置一个指示灯,该指示灯在PHY级别达到即将到来的链路破损,然后在NET层上导致数据包丢失。为此,我们使用正交频分复用解码事件,该解码事件组合为Dempster-Shafer理论(DST)。所提出的指标,称为链路破损预测指示器对给定链路执行,基于解码误差密度测量的分析,以维持链路历史。 DST对分析的现象的改编依赖于使用由接收功率,相对速度和误差密度控制的质量函数。由于使用谨慎的组合规则,由于这些异构信息的融合,获得了链路故障概率。后来允许考虑数据,即使它依赖而不提供偏见的结果。仿真结果表明,检测时间适合和稳健地防止移动性相关的特性,例如车辆速度和城市环境变异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号