首页> 外文期刊>Wireless Communications Letters, IEEE >Constructions of Optimal and Near-Optimal Quasi-Complementary Sequence Sets from Singer Difference Sets
【24h】

Constructions of Optimal and Near-Optimal Quasi-Complementary Sequence Sets from Singer Difference Sets

机译:从歌手差异集构造最佳和接近最佳的拟互补序列集

获取原文
获取原文并翻译 | 示例

摘要

Compared with the perfect complementary sequence sets, quasi-complementary sequence sets (QCSSs) have the advantage of supporting more users in multicarrier CDMA communications. Constructions for optimal and near-optimal periodic QCSSs are proposed in this paper by using the Singer difference sets and the existing optimal quaternary sequence sets. The maximum periodic correlation magnitude of the proposed optimal QCSS achieves the derived periodic correlation lower bound asymptotically. To the authors' best knowledge, such optimal QCSSs haven't been reported before.
机译:与完美的互补序列集相比,准互补序列集(QCSS)具有在多载波CDMA通信中支持更多用户的优势。利用Singer差分集和现有的最优四元序列集,提出了最优和接近最优的周期性QCSS的构造。所提出的最优QCSS的最大周期性相关幅度渐近地实现了导出的周期性相关下界。据作者所知,此类最佳QCSS尚未见报道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号