首页> 外文期刊>Wireless Communications Letters, IEEE >A Deep Reinforcement Learning Approach for Backscatter-Assisted Relay Communications
【24h】

A Deep Reinforcement Learning Approach for Backscatter-Assisted Relay Communications

机译:反向散射辅助中继通信的深度加强学习方法

获取原文
获取原文并翻译 | 示例

摘要

A backscatter-assisted relaying network (BRN) has been recently proposed to improve data rate, transmission range, and energy efficiency of D2D communications. In the BRN, as a D2D transmitter actively transmits data to a receiver in its time slot, other D2D transmitters can act as relays, i.e., helpers, through backscattering signal from the D2D transmitter to the receiver. This passive relay method has shown to be effective in terms of diversity gain. However, this impairs energy harvesting by the helpers and thus degrades their active data transmission performance. Therefore, the problem in the BRN is to optimize backscatter relaying policies, i.e., reflection coefficients, for the helpers to maximize the total network throughput over time slots. Finding the optimal decisions is generally challenging as energy in batteries, i.e., energy states, of the helpers and communication channels are dynamic and uncertain. In this letter, we propose to adopt the Deep Deterministic Policy Gradient (DDPG) algorithm to determine the optimal reflection coefficients of the helpers. The simulation results show that the proposed DRL scheme significantly improves the throughput performance.
机译:最近已经提出了反向散射辅助的中继网络(BRN)以提高D2D通信的数据速率,传输范围和能量效率。在BRN中,当D2D发射机在其时隙中主动向接收器发送数据时,其他D2D发射器可以充当继电器,即帮助器,通过从D2D发射机到接收器的反向散射信号。这种被动继电器方法在多样性增益方面表现出有效。然而,这损害了助手的能量收集,从而降低了它们的主动数据传输性能。因此,BRN中的问题是优化反向散射中继策略,即反射系数,为助手将总网络吞吐量最大化通过时隙。寻找最佳决策通常挑战电池中的能量,即能量状态,助理和通信渠道的能量和通信渠道是动态和不确定的。在这封信中,我们建议采用深度确定性政策梯度(DDPG)算法来确定助手的最佳反射系数。仿真结果表明,所提出的DRL方案显着提高了吞吐量性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号