首页> 外文期刊>Wireless Communications Letters, IEEE >Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
【24h】

Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems

机译:波束空间毫米波大规模MIMO系统的基于深度学习的信道估计

获取原文
获取原文并翻译 | 示例

摘要

Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a large number of training data. Furthermore, we provide an analytical framework on the asymptotic performance of the channel estimator. Based on our analysis and simulation results, the LDAMP neural network significantly outperforms state-of-the-art compressed sensing-based algorithms even when the receiver is equipped with a small number of RF chains.
机译:当接收机在波束空间毫米波大规模多输入和多输出系统中配备有限数量的射频(RF)链时,信道估计非常具有挑战性。为了解决这个问题,我们利用了一个学习的基于降噪的近似消息传递(LDAMP)网络。该神经网络可以学习通道结构并从大量训练数据中估计通道。此外,我们提供了有关信道估计器渐近性能的分析框架。根据我们的分析和仿真结果,即使接收器配备了少量RF链,LDAMP神经网络也明显优于基于压缩感知的最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号