首页> 外文期刊>IEEE transactions on wireless communications >Deep Learning-Based Edge Caching in Fog Radio Access Networks
【24h】

Deep Learning-Based Edge Caching in Fog Radio Access Networks

机译:雾无线电接入网络中基于深度学习的边缘缓存

获取原文
获取原文并翻译 | 示例

摘要

In this article, the edge caching policy in fog radio access networks (F-RANs) is optimized via deep learning. Considering that it is hard for fog access points (F-APs) to collect sufficient data of massive content features, our proposed edge caching policy only utilizes the number of requests and user location. In an offline phase, we propose to learn the corresponding popularity prediction model for every content popularity trend class and user location prediction models to make the popularity prediction accurate, adaptive and targeted. Moreover, we develop a loss function to avoid overfitting and increase sensitivity to high popularity for popularity prediction models. In an online phase, we propose a reactive caching scheme to react to user requests. In order to guarantee that classification can improve the popularity prediction accuracy in both phases, deep learning and k-Nearest Neighbor (kNN) are combined to classify popularity trends. Besides, a joint proactive-reactive caching policy is proposed to maximize the cache hit rate. The proposed policy is able to promptly track the various popularity trends with spatial-temporal popularity, trend and user dynamics with a low computational complexity. Extensive performance evaluation results show that the cache hit rate of our proposed policy approaches that of the optimal policy.
机译:在本文中,通过深度学习优化了FOG无线电接入网络(F-RANS)中的边缘缓存策略。考虑到雾接入点(F-AP)很难收集大量内容特征的足够数据,我们提出的边缘缓存策略仅利用请求和用户位置的数量。在离线阶段,我们建议学习对每个内容人气趋势类和用户位置预测模型的相应普及预测模型,以使得受欢迎的预测,自适应和靶向。此外,我们开发了一种损失功能,以避免过度装备,并提高对普及预测模型的高普及度的敏感性。在在线阶段,我们提出了一种反应缓存方案,以对用户请求作出反应。为了保证分类可以提高两个阶段的普及预测精度,将深度学习和K最近邻(KNN)组合以对普及趋势进行分类。此外,提出了联合积极的反应缓存政策,以最大化缓存命中率。拟议的政策能够及时跟踪具有低计算复杂性的空间时间普及,趋势和用户动态的各种普及趋势。广泛的绩效评估结果表明,我们拟议的政策的缓存命中率接近最佳政策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号