首页> 外文期刊>IEEE transactions on wireless communications >Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis
【24h】

Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis

机译:基于卷积神经网络的大型MIMO CSI反馈的多速率压缩感测:设计,仿真和分析

获取原文
获取原文并翻译 | 示例

摘要

Massive multiple-input multiple-output (MIMO) is a promising technology to increase link capacity and energy efficiency. However, these benefits are based on available channel state information (CSI) at the base station (BS). Therefore, user equipment (UE) needs to keep on feeding CSI back to the BS, thereby consuming precious bandwidth resource. Large-scale antennas at the BS for massive MIMO seriously increase this overhead. In this paper, we propose a multiple-rate compressive sensing neural network framework to compress and quantize the CSI. This framework not only improves reconstruction accuracy but also decreases storage space at the UE, thus enhancing the system feasibility. Specifically, we establish two network design principles for CSI feedback, propose a new network architecture, CsiNet+, according to these principles, and develop a novel quantization framework and training strategy. Next, we further introduce two different variable-rate approaches, namely, SM-CsiNet+ and PM-CsiNet+, which decrease the parameter number at the UE by 38.0% and 46.7%, respectively. Experimental results show that CsiNet+ outperforms the state-of-the-art network by a margin but only slightly increases the parameter number. We also investigate the compression and reconstruction mechanism behind deep learning-based CSI feedback methods via parameter visualization, which provides a guideline for subsequent research.
机译:大量多输入多输出(MIMO)是一种提高链路能力和能效的有希望的技术。然而,这些益处基于基站(BS)的可用信道状态信息(CSI)。因此,用户设备(UE)需要继续馈送CSI回到BS,从而消耗珍贵的带宽资源。 BS的大型天线用于大规模MIMO严重增加了这个开销。在本文中,我们提出了一种多速率压缩感测神经网络框架,用于压缩和量化CSI。该框架不仅提高了重建精度,而且还可以降低UE的存储空间,从而提高系统可行性。具体而言,我们为CSI反馈建立了两个网络设计原则,提出了新的网络架构,CSInet +,根据这些原则,并开发了一种新的量化框架和培训策略。接下来,我们进一步引入了两种不同的可变速率方法,即SM-CSINET +和PM-CSINET +,其分别将UE的参数数分别降低了38.0%和46.7%。实验结果表明,CSINET +优于最先进的网络的边距,但仅略微增加参数编号。我们还通过参数可视化调查基于深度学习的CSI反馈方法背后的压缩和重建机制,这提供了后续研究的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号