首页> 外文期刊>IEEE Transactions on Signal Processing >Closed-Loop Autonomous Pilot and Compressive CSIT Feedback Resource Adaptation in Multi-User FDD Massive MIMO Systems
【24h】

Closed-Loop Autonomous Pilot and Compressive CSIT Feedback Resource Adaptation in Multi-User FDD Massive MIMO Systems

机译:多用户FDD大规模MIMO系统中的闭环自主导频和压缩CSIT反馈资源自适应

获取原文
获取原文并翻译 | 示例

摘要

Acquisition of accurate channel state information (CSI) at the transmitter (CSIT) is a major challenge of deploying frequency-division duplexing massive MIMO systems. Although compressive sensing (CS)-based CSIT estimation approaches have been proposed to reduce the pilot training overhead for massive MIMO systems, the existing schemes cannot properly dimension the minimum required pilot symbols to estimate the CSIT of all users at the required CSIT quality, because of the loose bounds on the required number of measurements for successful CS recovery and the unknown sparsity levels of user channels. In this paper, we propose a robust closed-loop pilot and CSIT feedback resource adaptation framework which not only exploits the joint sparsity of the multiuser massive MIMO channels to improve the CSIT estimation performance, but also has the built-in learning capability to adapt to the minimum pilot and feedback resources needed for successful CSIT recovery under unknown and time-varying channel sparsity levels. We establish the convergence of the proposed closed-loop adaptation algorithm under certain conditions. Simulations show that the proposed framework has substantial performance gain over conventional schemes with a fixed number of pilots and is very robust to dynamic sparsity as well as model mismatch.
机译:在发射机(CSIT)上获取准确的信道状态信息(CSI)是部署频分双工大规模MIMO系统的主要挑战。尽管已经提出了基于压缩感知(CS)的CSIT估计方法来减少大规模MIMO系统的导频训练开销,但是现有方案无法适当地确定最小所需导频符号的大小,以估计所需CSIT质量的所有用户的CSIT。成功CS恢复所需的测量数量的宽松界限以及用户通道的未知稀疏性级别。在本文中,我们提出了一个鲁棒的闭环导频和CSIT反馈资源自适应框架,该框架不仅利用多用户大规模MIMO信道的联合稀疏性来提高CSIT估计性能,而且具有内置的学习能力以适应在未知且时变的信道稀疏性水平下,成功恢复CSIT所需的最小导频和反馈资源。我们在一定条件下建立了所提出的闭环自适应算法的收敛性。仿真表明,与具有固定导频数的常规方案相比,所提出的框架具有显着的性能提升,并且对动态稀疏性和模型失配具有非常强的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号