首页> 外文期刊>Web Intelligence and Agent Systems >A point of interest recommendation method using user similarity
【24h】

A point of interest recommendation method using user similarity

机译:利用用户相似度的兴趣点推荐方法

获取原文
获取原文并翻译 | 示例

摘要

Point of Interest (POI) recommendation aims to recommend places which users have not visited before. In this paper, we proposed a POI recommendation method using user similarity, which assumes that people may be interested in the places that others have been to but they have not visited before. In this paper, one day can be divided into 24 time-slots, thus each hour can be defined as a time slot. The novelty of the method we proposed lies in user features which adopted by the summation of user’s check-in times in each time slot. The check-in times for each user can be collected and then form a vector, and we can take advantage of the summation of these check-in times in each time slot to find out user characteristics. The similarity between any two users can be calculated by cosine similarity method. Then a sorted list of scores which includes all unvisited locations of each user can be obtained according to user similarity. Through these steps, a POI recommendation list can be produced according to the score from high to low. The experimental result indicates that the method we proposed in this paper is effective.
机译:兴趣点(POI)推荐旨在推荐用户以前未曾去过的地方。在本文中,我们提出了一种使用用户相似性的POI推荐方法,该方法假设人们可能对其他人曾经去过但以前从未去过的地方感兴趣。在本文中,一天可以分为24个时隙,因此可以将每个小时定义为一个时隙。我们提出的方法的新颖之处在于用户功能,该功能被每个时隙中用户的签到时间总和所采用。可以收集每个用户的签到时间,然后形成一个向量,我们可以利用每个时隙中这些签到时间的总和来找出用户特征。可以通过余弦相似度方法来计算任意两个用户之间的相似度。然后,可以根据用户相似性获得包括每个用户的所有未访问位置的分数的排序列表。通过这些步骤,可以根据分数从高到低生成POI推荐列表。实验结果表明,本文提出的方法是有效的。

著录项

  • 来源
    《Web Intelligence and Agent Systems》 |2018年第2期|105-112|共8页
  • 作者单位

    Key Laboratory of Dependable Service Computing in Cyber Physical Society, Chongqing University, Chongqing, China,Graduate School of Big Data and Software Engineering, Chongqing University, Chongqing, China;

    Graduate School of Big Data and Software Engineering, Chongqing University, Chongqing, China;

    Graduate School of Big Data and Software Engineering, Chongqing University, Chongqing, China;

    Graduate School of Big Data and Software Engineering, Chongqing University, Chongqing, China;

    Graduate School of Big Data and Software Engineering, Chongqing University, Chongqing, China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    POI recommendation; time slot; user similarity; check-in time;

    机译:POI推荐;时隙;用户相似度;签到时间;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号