首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Exploiting Hardware Unobservability for Low-Power Design and Safety Analysis in Formal Verification-Driven Design Flows
【24h】

Exploiting Hardware Unobservability for Low-Power Design and Safety Analysis in Formal Verification-Driven Design Flows

机译:在正式验证驱动设计流程中利用低功耗设计和安全分析的硬件不可观察性

获取原文
获取原文并翻译 | 示例

摘要

Formal techniques for the functional verification of System-on-Chip (SoC) hardware have matured significantly over the last years. They can penetrate deeply into a design to exhibit complex functional dependencies between various design components in terms of detailed logical and temporal relationships. They can also provide a well-defined formal relationship between an abstract system model of a design and its concrete implementation at the register-transfer level (RTL). This paper shows how such knowledge available from formal verification can be "condensed" into a database that stores all registers and flip-flops, at which time points they are actually relevant for the correct behavior of the design and when they are not. We show that the comprehensive information on temporary unobservabilities in the design can be of great value to reach two nonfunctional design goals that play a dominant role in many design flows: safety and low power consumption. This paper presents techniques to assess the effects of soft errors by single-event upsets (SEUs) with formal precision and to relate the results of the proposed analysis to an abstract system model. For example, our analysis can determine which soft errors may lead to a system "crash" and which are guaranteed not to cause any harm. For the application of the proposed approach in power optimization, this paper presents techniques for clock gating and power gating. For the examined designs, we observe a reduction of power consumption between 10% and 50% on top of the state-of-the-art commercial power synthesis.
机译:在过去几年中,片上系统(SOC)硬件功能验证的正式技术显着成熟。它们可以深入化为一种设计,以便在详细的逻辑和时间关系方面在各种设计组件之间表现出复杂的功能依赖性。它们还可以在寄存器转移水平(RTL)的设计和混凝土实施之间的抽象系统模型之间提供明确的正式关系。本文显示了如何从形式验证可用的知识可以将“浓缩”到存储所有寄存器和触发器的数据库中,在此时它们实际上与设计的正确行为以及何时不相关。我们表明,关于设计中临时的临时无能为力的综合信息可以具有很大的价值,以达到两种非功能设计目标,在许多设计流动中发挥着主导作用:安全性和低功耗。本文提出了通过单事件UPSET(SEU)以正式精度评估软误差的影响,并将建议分析的结果与抽象系统模型进行评估。例如,我们的分析可以确定哪些软误差可能导致系统“崩溃”,保证不会造成任何伤害。本文介绍了所提出的电力优化方法,介绍了时钟门控和功率门控技术。对于审查的设计,我们在最先进的商业电力合成之上,观察功耗降低10%至5​​0%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号