首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A Gaussian synapse circuit for analog VLSI neural networks
【24h】

A Gaussian synapse circuit for analog VLSI neural networks

机译:用于模拟VLSI神经网络的高斯突触电路

获取原文
获取原文并翻译 | 示例

摘要

Back-propagation neural networks with Gaussian function synapsesnhave better convergence property over those with linear-multiplyingnsynapses. In digital simulation, more computing time is spent onnGaussian function evaluation. We present a compact analog synapse cellnwhich is not biased in the subthreshold region for fully-parallelnoperation. This cell can approximate a Gaussian function with accuracynaround 98% in the ideal case. Device mismatch induced by fabricationnprocess will cause some degradation to this approximation. The Gaussiannsynapse cell can also be used in unsupervised learning. Programmabilitynof the proposed Gaussian synapse cell is achieved by changing the storednsynapse weight Wji, the reference current and the sizes ofntransistors in the differential pair
机译:具有高斯函数突触的反向传播神经网络具有比具有线性乘法神经突触的神经网络更好的收敛性。在数字仿真中,更多的计算时间花费在n高斯函数评估上。我们提出了一个紧凑的模拟突触细胞,在完全平行操作的亚阈值区域内没有偏见。在理想情况下,该像元可以逼近高斯函数,精度约为98%。由制造过程引起的器件失配将导致该近似值下降。高斯突触细胞也可用于无监督学习中。通过改变所存储的突触权重Wji,参考电流和差分对中n晶体管的尺寸来实现拟议的高斯突触细胞的可编程性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号