首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Embryonics: a new methodology for designing field-programmable gate arrays with self-repair and self-replicating properties
【24h】

Embryonics: a new methodology for designing field-programmable gate arrays with self-repair and self-replicating properties

机译:胚胎学:一种设计具有自我修复和自我复制特性的现场可编程门阵列的新方法

获取原文
获取原文并翻译 | 示例

摘要

The growth and the operation of all living beings are directed through the interpretation, in each of their cells, of a chemical program, the DNA string or genome. This process is the source of inspiration for the Embryonics (embryonic electronics) project, whose final objective is the conception of very large scale integrated circuits endowed with properties usually associated with the living world: self-repair (cicatrization) and self-replication. We begin by showing that any logic system can be represented by an ordered binary decision diagram (OBDD), and then embedded into a fine-grained field-programmable gate array (FPGA) whose basic cell is a multiplexer with programmable connections. The cellular array thus obtained is perfectly homogeneous: the function of each cell is defined by a configuration (or gene) and all the genes in the array, each associated with a pair of coordinates, make up the blueprint (or genome) of the artificial organism. In the second part of the project, we add to the basic cell a memory and an interpreter to, respectively, store and decode the complete genome. The interpreter extracts from the genome the gene of a particular cell as a function of its position in the array (its coordinates) and thus determines the exact configuration of the relative multiplexer. The considerable redundancy introduced by the presence of a genome in each cell has significant advantages: self-replication (the automatic production of one or more copies of the original organism) and self-repair (the automatic repair of one or more faulty cells) become relatively simple operations. The multiplexer-based FPGA cell and the interpreter are finally embedded into an electronic module; an array of such modules make it possible to demonstrate self-repair and self-replication.
机译:所有生物的生长和运行都通过在其每个细胞中解释化学程序,DNA串或基因组来进行。这个过程是胚胎(胚胎电子)项目的灵感来源,该项目的最终目标是超大规模集成电路的概念,这种集成电路具有通常与生活世界相关的特性:自我修复(自我化)和自我复制。首先,我们说明任何逻辑系统都可以用有序的二进制决策图(OBDD)表示,然后嵌入到细粒度的现场可编程门阵列(FPGA)中,该阵列的基本单元是具有可编程连接的多路复用器。这样获得的细胞阵列是完全均匀的:每个细胞的功能由一个构型(或基因)定义,并且阵列中的所有基因(每个与一对坐标相关联)构成了人工晶体的蓝图(或基因组)。生物。在该项目的第二部分中,我们向基本单元中添加了一个内存和一个解释器,以分别存储和解码完整的基因组。解释器根据基因组在阵列中的位置(坐标)从基因组中提取特定细胞的基因,从而确定相对多路复用器的确切构型。每个细胞中存在基因组所带来的大量冗余具有显着的优势:自我复制(自动产生原始生物的一个或多个副本)和自我修复(自动修复一个或多个有缺陷的细胞)变得很重要。相对简单的操作。最后,将基于多路复用器的FPGA单元和解释器嵌入到电子模块中。一系列这样的模块可以证明自我修复和自我复制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号