【24h】

Rent exponent prediction methods

机译:租金指数预测方法

获取原文
获取原文并翻译 | 示例

摘要

A wide variety of models for estimating the distribution ofnon-chip net lengths assume an accurate estimate for an empiricalnparameter called the Rent exponent. Due to its definition as annexponent, these models are sensitive to its precise value, and carefulnselection is essential for good estimates of layout requirements andncycle times. In addition, it is also important to be able to predictnchanges in the Rent exponent with (possibly discontinuous) changes inninterconnect technology. This paper presents a range of methods fornestimating the Rent exponents of arbitrarily large gate placements as anfunction of optimization procedure and the level of fan-out present innthe netlist. The first part of the paper describes a rapid algorithmicnapproach which combines the self-similar, or fractal attributes of smallnwiring cells with a Monte Carlo sampling method. This method is shown tonaccurately account for variations in both the wiring signature of thennetlist and for the effects of most algorithms used for placementnoptimization. The second part of the paper presents an analytical modelnfor Rent exponent prediction, based on a renormalization groupntransformation. This transformation is designed to filter outninformation which does not contribute to the scale-invariant propertiesnof the optimized netlist enabling the derivation of a closed-formnexpression for the Rent exponent
机译:估计非芯片净长度分布的各种模型都假设对称为“ Rent指数”的经验参数进行了准确的估计。由于其定义为附件,因此这些模型对其精确值敏感,而精心选择对于正确估计布局要求和周期时间至关重要。此外,通过互联技术的变化(可能是不连续的)来预测租金指数的变化也很重要。本文提出了一系列方法,可以根据优化程序和网表中存在的扇出水平来估计任意大型浇口布置的租金指数。本文的第一部分描述了一种快速算法方法,该方法将较小布线单元的自相似或分形属性与蒙特卡洛采样方法相结合。所显示的这种方法准确地说明了网表布线标记的变化以及大多数用于布局优化的算法的效果。本文的第二部分介绍了基于重整化分组变换的租金指数预测的解析模型。此转换旨在过滤不会影响优化网表的尺度不变属性n的信息,从而能够导出Rent指数的闭式表达式

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号