首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Hardware Generation of Arbitrary Random Number Distributions From Uniform Distributions Via the Inversion Method
【24h】

Hardware Generation of Arbitrary Random Number Distributions From Uniform Distributions Via the Inversion Method

机译:通过反演方法从均匀分布硬件生成任意随机数分布

获取原文
获取原文并翻译 | 示例

摘要

We present an automated methodology for producing hardware-based random number generator (RNG) designs for arbitrary distributions using the inverse cumulative distribution function (ICDF). The ICDF is evaluated via piecewise polynomial approximation with a hierarchical segmentation scheme that involves uniform segments and segments with size varying by powers of two which can adapt to local function nonlinearities. Analytical error analysis is used to guarantee accuracy to one unit in the last place (ulp). Compact and efficient RNGs that can reach arbitrary multiples of the standard deviation $sigma$ can be generated. For instance, a Gaussian RNG based on our approach for a Xilinx Virtex-4 XC4VLX100-12 field-programmable gate array produces 16-bit random samples up to $8.2sigma$. It occupies 487 slices, 2 block-RAMs, and 2 DSP-blocks. The design is capable of running at 371 MHz and generates one sample every clock cycle.
机译:我们提出了一种自动化的方法,可以使用逆累积分布函数(ICDF)生成用于任意分布的基于硬件的随机数生成器(RNG)设计。通过使用分段分段方案的分段多项式逼近来评估ICDF,该分段分段方案包括均匀的分段和分段,分段的大小以2的幂进行变化,可以适应局部函数非线性。分析误差分析用于确保最后一个单元(ulp)的精度。可以生成紧凑且有效的RNG,可以达到标准偏差$ sigma $的任意倍数。例如,基于我们针对Xilinx Virtex-4 XC4VLX100-12现场可编程门阵列的方法的高斯RNG产生16位随机样本,最高可达$ 8.2sigma $。它占用了487个切片,2个Block-RAM和2个DSP块。该设计能够以371 MHz的频率运行,并在每个时钟周期生成一个样本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号