首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Flexible Parallel Hardware Architecture for AdaBoost-Based Real-Time Object Detection
【24h】

A Flexible Parallel Hardware Architecture for AdaBoost-Based Real-Time Object Detection

机译:灵活的并行硬件架构,用于基于AdaBoost的实时对象检测

获取原文
获取原文并翻译 | 示例

摘要

Real-time object detection is becoming necessary for a wide number of applications related to computer vision and image processing, security, bioinformatics, and several other areas. Existing software implementations of object detection algorithms are constrained in small-sized images and rely on favorable conditions in the image frame to achieve real-time detection frame rates. Efforts to design hardware architectures have yielded encouraging results, yet are mostly directed towards a single application, targeting specific operating environments. Consequently, there is a need for hardware architectures capable of detecting several objects in large image frames, and which can be used under several object detection scenarios. In this work, we present a generic, flexible parallel architecture, which is suitable for all ranges of object detection applications and image sizes. The architecture implements the AdaBoost-based detection algorithm, which is considered one of the most efficient object detection algorithms. Through both field-programmable gate array emulation and large-scale implementation, and register transfer level synthesis and simulation, we illustrate that the architecture can detect objects in large images (up to 1024 $times$ 768 pixels) with frame rates that can vary between 64–139 fps for various applications and input image frame sizes.
机译:对于与计算机视觉和图像处理,安全性,生物信息学以及其他几个领域有关的众多应用,实时对象检测已成为必需。对象检测算法的现有软件实现方式被限制在小尺寸图像中,并且依赖于图像帧中的有利条件来实现实时检测帧速率。设计硬件体系结构的努力取得了令人鼓舞的结果,但主要针对的是针对特定操作环境的单个应用程序。因此,需要一种能够检测大图像帧中的多个对象并且可以在几种对象检测场景下使用的硬件体系结构。在这项工作中,我们提出了一种通用的,灵活的并行体系结构,适用于所有范围的对象检测应用程序和图像大小。该架构实现了基于AdaBoost的检测算法,该算法被认为是最有效的对象检测算法之一。通过现场可编程门阵列仿真和大规模实现,以及寄存器传输级合成和仿真,我们说明了该体系结构可以检测大图像(最多1024×768像素)中的对象,并且帧速率在适用于各种应用和输入图像帧大小的64–139​​ fps。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号