首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Goldschmidt Division Method With Faster Than Quadratic Convergence
【24h】

A Goldschmidt Division Method With Faster Than Quadratic Convergence

机译:快于二次收敛的Goldschmidt除法

获取原文
获取原文并翻译 | 示例

摘要

A new method to implement faster than quadratic convergence for Goldschmidt division using simple logic circuits is presented. While the approximate quotient converges quadratically in conventional Goldschmidt division, the new method achieves nearly cubic convergence. Although division with cubic convergence has been regarded as impractical due to its complexity, the proposed method reduces the logic complexity and the delay by using an approximate squarer with a simple logic implementation and a redundant binary Booth recoder. It is especially effective in a system that already has a radix-8 multiplier. As a result, the effective area for the reciprocal table can be reduced by 25.4%. The proposed method has been verified by SystemC and Verilog models. The final results are confirmed by simulation with both random double precision numbers and an exhaustive suite of 17-bit test vectors.
机译:提出了一种使用简单逻辑电路实现比Goldschmidt除法快于二次收敛的新方法。在传统的Goldschmidt除法中,近似商二次收敛,而新方法实现了近三次收敛。尽管三次收敛除法由于其复杂性已被认为是不切实际的,但该方法通过使用具有简单逻辑实现和冗余二进制Booth编码器的近似平方器,降低了逻辑复杂度和延迟。在已经具有基数8乘法器的系统中,此功能特别有效。结果,可将倒数表的有效面积减少25.4%。 SystemC和Verilog模型验证了该方法的有效性。通过使用随机双精度数字和详尽的17位测试向量套件进行仿真,可以确认最终结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号