首页> 外文期刊>Computers, IEEE Transactions on >A Rounding Method to Reduce the Required Multiplier Precision for Goldschmidt Division
【24h】

A Rounding Method to Reduce the Required Multiplier Precision for Goldschmidt Division

机译:一种舍入方法,用于降低Goldschmidt除法所需的乘数精度

获取原文
获取原文并翻译 | 示例

摘要

A new rounding method to reduce the required precision of the multiplier for Goldschmidt division is presented. It applies special truncation methods at the final iteration step. This requires a minor modification to the rounding constants of the multiplier. It allows twice the error tolerance of conventional methods and inclusive error bounds. The proposed method further reduces the required precision of the multiplier by considering the asymmetric error bounds of Goldschmidt dividers where the factors are computed using a one's complement operation. As a result, the proposed rounding method allows the multiplier of a three-iteration Goldschmidt divider to be implemented using only three extra bits. The proposed method has been verified using a SystemC hardware model of the divider supporting variable precision. The validity of the error analysis is also checked via simulation. The final rounding results are checked with both 10^{10} random double precision floating-point significands and an exhaustive suite of 17-bit test vectors.
机译:提出了一种新的舍入方法,以降低Goldschmidt除法的乘法器所需的精度。它在最后的迭代步骤中应用了特殊的截断方法。这需要对乘法器的舍入常数进行较小的修改。它的容错能力是传统方法的两倍,并且包含误差范围。所提出的方法通过考虑Goldschmidt分频器的不对称误差范围来进一步降低乘法器的精度,在该范围内,使用一个人的补码运算来计算因子。结果,所提出的舍入方法允许仅使用三个额外的位来实现三迭代戈德施密特除法器的乘法器。使用支持可变精度的分频器的SystemC硬件模型对提出的方法进行了验证。误差分析的有效性也通过仿真进行检查。使用10 ^ {10}随机双精度浮点有效数和详尽的17位测试向量套件检查最终舍入结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号