首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Algorithm-Driven Architectural Design Space Exploration of Domain-Specific Medical-Sensor Processors
【24h】

Algorithm-Driven Architectural Design Space Exploration of Domain-Specific Medical-Sensor Processors

机译:特定领域医疗传感器处理器的算法驱动架构设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

Data-driven machine-learning techniques enable the modeling and interpretation of complex physiological signals. The energy consumption of these techniques, however, can be excessive, due to the complexity of the models required. In this paper, we study the tradeoffs and limitations imposed by the energy consumption of high-order detection models implemented in devices designed for intelligent biomedical sensing. Based on the flexibility and efficiency needs at various processing stages in data-driven biomedical algorithms, we explore options for hardware specialization through architectures based on custom instruction and coprocessor computations. We identify the limitations in the former, and propose a coprocessor-based platform that exploits parallelism in computation as well as voltage scaling to operate at a subthreshold minimum-energy point. We present results from post-layout simulation of cardiac arrhythmia detection with patient data from the MIT-BIH database. After wavelet-based feature extraction, which consumes 12.28 $mu{rm J}$, we demonstrate classification computations in the 12.00–120.05 $mu{rm J}$ range using 10000–100000 support vectors. This represents $1170times$ lower energy than that of a low-power processor with custom instructions alone. After morphological feature extraction, which consumes 8.65 $mu{rm J}$ of energy, the corresponding energy numbers are 10.24–24.51 $mu{rm J}$ , which is $1548times$ smaller than one based on a custom-instruction design. Results correspond to ${rm V}_{dd}=0.4~{rm V}$ and a data precision of 8 b.
机译:数据驱动的机器学习技术可以对复杂的生理信号进行建模和解释。但是,由于所需模型的复杂性,这些技术的能耗可能过高。在本文中,我们研究了为智能生物医学传感设计的设备中实现的高阶检测模型的能耗所带来的取舍和限制。基于数据驱动的生物医学算法在各个处理阶段的灵活性和效率需求,我们探索了通过基于定制指令和协处理器计算的体系结构进行硬件专业化的选项。我们确定了前者的局限性,并提出了一个基于协处理器的平台,该平台在计算和电压缩放方面利用并行性,以在亚阈值最小能量点上运行。我们用来自MIT-BIH数据库的患者数据,介绍了心律失常检测的布局后模拟结果。在基于小波的特征提取(消耗了12.28 $ mu {rm J} $ )之后,我们在12.00–使用10000–100000支持向量,范围为120.05 $ mu {rm J} $ 范围。这表示 $ 1170×$ 的能量比仅具有自定义指令的低功耗处理器要低。形态特征提取后,消耗了8.65的 $ mu {rm J} $ 能量,相应的能量数为10.24–24.51 $ mu {rm J} $ ,即 $ 1548times $ 小于基于自定义指令设计的值。结果对应于 $ {rm V} _ {dd} = 0.4〜{rm V} $ ,数据精度为8羽

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号