首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Fine-Grain Dynamically Reconfigurable Architecture Aimed at Reducing the FPGA-ASIC Gaps
【24h】

A Fine-Grain Dynamically Reconfigurable Architecture Aimed at Reducing the FPGA-ASIC Gaps

机译:旨在减少FPGA-ASIC差距的细粒度动态可重配置架构

获取原文
获取原文并翻译 | 示例

摘要

Prior work has shown that due to the overhead incurred in enabling reconfigurability, field-programmable gate arrays (FPGAs) require more silicon area, larger delay, and more dynamic power consumption compared with application-specific integrated circuits (ASICs). We have earlier presented a hybrid CMOSanotechnology reconfigurable architecture (NATURE). It uses the concept of temporal logic folding and fine-grain (i.e., cycle-level) dynamic reconfiguration to increase logic density by an order of magnitude. Since logic folding reduces area usage significantly, on-chip communications tend to become localized. To take full advantage of this fact, we propose a new architecture, called fine-grain dynamically reconfigurable (FDR), that consists of an array of homogeneous reconfigurable logic elements (LEs). Each LE can be arbitrarily configured into a lookup table (LUT) or interconnect or a combination of both. This significantly enhances the flexibility of allocating hardware resources between LUTs and interconnects based on application needs. The proposed FDR architecture eliminates most of the long-distance and global wires, which occupy most of the area in conventional FPGAs. Fine-grain dynamic reconfiguration is enabled by local embedded static RAM blocks. The experiments show that, on an average, area, delay, and power are improved by , , and , compared with a conventional FPGA architecture that does not use the concept of logic folding. Compared with NATURE with de- p logic folding, area, delay, and power are improved by , , and , respectively. Although this does not eliminate the FPGA-ASIC area/delay/power gaps, it makes progress toward bridging these gaps.
机译:先前的工作表明,由于启用可重新配置性会产生开销,因此与专用集成电路(ASIC)相比,现场可编程门阵列(FPGA)需要更大的硅面积,更大的延迟和更大的动态功耗。我们之前已经提出了CMOS /纳米技术可重构混合体系结构(NATURE)。它使用时间逻辑折叠和细粒度(即循环级)动态重新配置的概念来将逻辑密度增加一个数量级。由于逻辑折叠大大减少了面积使用,因此片上通信趋于局部化。为了充分利用这一事实,我们提出了一种称为细粒度动态可重新配置(FDR)的新体系结构,该体系结构由一组同类可重配置逻辑元素(LE)组成。可以将每个LE任意配置为查找表(LUT)或互连或两者的组合。这极大地提高了根据应用程序需求在LUT和互连之间分配硬件资源的灵活性。所提出的FDR体系结构消除了大多数长距离和全局线路,这些线路占据了传统FPGA的大部分区域。通过本地嵌入式静态RAM块可以启用细粒度动态重新配置。实验表明,与不使用逻辑折叠概念的常规FPGA架构相比,平均而言,面积,延迟和功耗提高了。与具有DEP逻辑折叠功能的NATURE相比,面积,延迟和功耗分别提高了,和。尽管这不能消除FPGA-ASIC的面积/延迟/功耗差距,但在弥合这些差距方面取得了进步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号