首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Analyzing the Efficiency of L1 Caches for Reliable Hybrid-Voltage Operation Using EDC Codes
【24h】

Analyzing the Efficiency of L1 Caches for Reliable Hybrid-Voltage Operation Using EDC Codes

机译:使用EDC代码分析L1高速缓存进行可靠的混合电压操作的效率

获取原文
获取原文并翻译 | 示例

摘要

The increasing demand for highly miniaturized battery-powered ultralow cost systems (e.g., below 1 dollar) in emerging applications such as body, urban life and environment monitoring, and so on, has introduced many challenges in chip design. Such applications require high performance occasionally and very little energy consumption during most of the time to extend battery lifetime. In addition, they require real-time guarantees. Caches have been shown to be the most critical blocks in these systems due to their high energy/area consumption and hard-to-predict behavior. New, simple, hybrid-voltage operation (high $V_{rm cc}$ and ultralow $V_{rm cc}$ ), single- $V_{rm cc}$ domain L1 cache architectures based on replacing energy-hungry bitcells (e.g., 10T) by more energy-efficient and smaller cells (e.g., 8T) enhanced with error detection and correction codes have been recently proposed. Such designs provide significant energy and area efficiency without jeopardizing reliability levels to still provide strong performance guarantees. In this brief, we analyze the efficiency of these designs during ultralow voltage operation. We identify the limits of such approaches by finding an energy-optimal voltage region through experimental models. The experimental results show that area efficiency is always achieved in the range 200–400 mV, whereas both energy and area gains occur above 250 mV, i.e., in near-threshold regime.
机译:在诸如人体,城市生活和环境监测等新兴应用中,对高度小型化的电池供电的超低成本系统(例如,低于1美元)的需求不断增加,这在芯片设计中提出了许多挑战。此类应用偶尔需要高性能,并且在大多数时间中只需要很少的能量消耗即可延长电池寿命。另外,它们需要实时保证。由于高速缓存的高能耗/区域消耗和难以预测的行为,它们已被证明是这些系统中最关键的块。新的,简单的混合电压操作(高 $ V_ {rm cc} $ 和超低 $ V_ {rm cc} $ ),单- $ V_ {rm cc} $ 域L1缓存体系结构,其原理是将能源消耗巨大的位单元(例如10T)替换为更高能效的较小单元(例如8T),并增强了错误最近已经提出了检测和校正码。这样的设计提供了显着的能量和面积效率,而没有损害可靠性水平,仍然提供了强大的性能保证。在本文中,我们分析了超低压运行期间这些设计的效率。通过实验模型找到能量最佳电压区域,我们确定了这种方法的局限性。实验结果表明,面积效率始终在200-400 mV的范围内实现,而能量和面积增益都出现在250 mV以上,即在接近阈值状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号