首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Built-in Self-Calibration and Digital-Trim Technique for 14-Bit SAR ADCs Achieving ±1 LSB INL
【24h】

Built-in Self-Calibration and Digital-Trim Technique for 14-Bit SAR ADCs Achieving ±1 LSB INL

机译:内置自校准和数字修剪技术,用于实现±1 LSB INL的14位SAR ADC

获取原文
获取原文并翻译 | 示例

摘要

Several state-of-the-art monitoring and control systems, such as dc motor controllers, power line monitoring and protection systems, instrumentation systems, and battery monitors, require direct digitization of high-voltage (HV) input signals. Analog-to-digital converters (ADCs) that can digitize HV signals require high linearity and low-voltage coefficient capacitors. A built-in self-calibration and digital-trim algorithm correcting static mismatches in capacitive digital-to-analog converter (DAC) used in successive approximation register analog-to-digital converters (SAR ADCs) is proposed. The algorithm uses a dynamic error correction (DEC) capacitor to cancel the static errors occurring in each capacitor of the array as the first step upon power-up and eliminates the need for an extra calibration DAC. Self-trimming is performed digitally during normal ADC operation. The algorithm is implemented on a 14-bit HV input range SAR ADC with integrated DEC capacitors. The IC is fabricated in 0.6-m HV-compliant CMOS process, accepting up to differential input signal. The proposed approach achieves 73.32-dB signal-to-noise and distortion ratio, which is an improvement of 12.03 dB after self-calibration at 400-kS/s sampling rate, consuming 90 mW from a ±15 V supply. The calibration circuitry occupies 28% of the capacitor DAC and consumes <15 mW during operation. Measurement results show that this algorithm reduces integral nonlinearity from as high as 7 LSBs down to 1 LSB, and it works even in the presence of larger mismatches exceeding 260 LSBs. Similarly, it reduces differential nonlinearity errors from 10 LSBs down to 1 LSB. The ADC occupies an active area of 9.76 mm.
机译:几种最先进的监视和控制系统,例如直流电动机控制器,电力线监视和保护系统,仪表系统和电池监视器,都需要对高压(HV)输入信号进行直接数字化。可以数字化HV信号的模数转换器(ADC)需要高线性度和低电压系数电容器。提出了一种内置的自校准和数字修剪算法,用于校正逐次逼近寄存器模数转换器(SAR ADC)中使用的容性数模转换器(DAC)中的静态失配。该算法使用动态误差校正(DEC)电容器来消除上电时第一步中出现在阵列每个电容器中的静态误差,并且不需要额外的校准DAC。在正常ADC工作期间,数字自动修整。该算法在具有集成DEC电容器的14位HV输入范围SAR ADC上实现。该IC采用0.6米HV兼容CMOS工艺制造,可接收高达差分输入信号。所提出的方法实现了73.32 dB的信噪比和失真率,在以400 kS / s的采样率进行自校准后,该噪声比提高了12.03 dB,从±15 V电源消耗了90 mW的功率。校准电路占电容器DAC的28%,并且在工作期间功耗小于15 mW。测量结果表明,该算法可将积分非线性从高达7 LSB降低到1 LSB,并且即使在存在超过260 LSB的较大失配情况下也可以工作。同样,它将差分非线性误差从10 LSB降低到1 LSB。 ADC占用的有效面积为9.76 mm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号