首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Defect- and Variation-Tolerant Logic Mapping in Nanocrossbar Using Bipartite Matching and Memetic Algorithm
【24h】

Defect- and Variation-Tolerant Logic Mapping in Nanocrossbar Using Bipartite Matching and Memetic Algorithm

机译:使用双向匹配和模因算法的纳米交叉开关中的容错和变异容错逻辑映射

获取原文
获取原文并翻译 | 示例

摘要

High defect density and extreme parameter variation make it very difficult to implement reliable logic functions in crossbar-based nanoarchitectures. It is a major design challenge to tolerate defects and variations simultaneously for such architectures. In this paper, a method based on a bipartite matching and memetic algorithm is proposed for defect- and variation-tolerant logic mapping (D/VTLM) problem in crossbar-based nanoarchitectures. In the proposed method, the search space of the D/VTLM problem can be dramatically reduced through the introduction of the min-max weight maximum-bipartite-matching (MMW-MBM) and a related heuristic bipartite matching method. MMW-MBM is defined on a weighted bipartite graph as an MBM, where the maximal weight of the edges in the matching has a minimal value. In addition, a defect- and variation-aware local search (D/VALS) operator is proposed for D/VTLM and embedded in a global search framework. The D/VALS operator is able to utilize the domain knowledge extracted from problem instances and, thus, has the potential to search the solution space more efficiently. Compared with the state-of-the-art heuristic and recursive algorithms, and a simulated annealing algorithm, the good performance of our proposed method is verified on a 3-bit adder and a large set of random benchmarks of various scales.
机译:高缺陷密度和极端的参数变化使得在基于交叉开关的纳米体系结构中实现可靠的逻辑功能非常困难。对于这样的架构,同时容忍缺陷和变化是一个主要的设计挑战。本文提出了一种基于二分匹配和模因算法的方法来解决基于交叉开关的纳米体系结构中的缺陷和变异容忍逻辑映射(D / VTLM)问题。在提出的方法中,可以通过引入最小-最大权重最大二分匹配(MMW-MBM)和相关的启发式二分匹配方法来大大减少D / VTLM问题的搜索空间。 MMW-MBM在加权二部图上定义为MBM,其中匹配中边缘的最大权重为最小值。此外,针对D / VTLM提出了一种具有缺陷和变异意识的本地搜索(D / VALS)运算符,并将其嵌入到全局搜索框架中。 D / VALS运算符能够利用从问题实例中提取的领域知识,因此有可能更有效地搜索解决方案空间。与最新的启发式和递归算法以及模拟退火算法相比,我们的方法在3位加法器和大量不同尺度的随机基准上得到了良好的性能。

著录项

  • 来源
  • 作者单位

    School of Computer Science, UBRI, University of Science and Technology of China, Hefei, China;

    UBRI and the Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology (USTC), Hefei, China;

    School of Computer Science, UBRI, University of Science and Technology of China, Hefei, China;

    UBRI and the Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science, University of Birmingham, Birmingham, U.K.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bipartite graph; Heuristic algorithms; Logic functions; Delays; Search problems; Wires; Memetics;

    机译:二部图;启发式算法;逻辑函数;延迟;搜索问题;电线;模因;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号